Abstract
Dermal exposure, primarily to pesticides, has been measured for almost half a century. Compared with exposure by inhalation, limited progress has been made towards standardisation of methods of measurement and development of biologically relevant exposure measures. It is suggested that the absence of a consistent terminology and a theoretical model has been an important cause of this lack of progress. Therefore, a consistent terminology based on a multicompartment model for assessment of dermal exposure is proposed that describes the transport of contaminant mass from the source of the hazardous substance to the surface of the skin. Six compartments and two barriers together with eight mass transport processes are described. With the model structure, examples are given of what some existing methods actually measure and where there are limited, or no, methods for measuring the relevant mass in a compartment or transport of mass. The importance of measuring the concentration of contaminant and not mass per area in the skin contaminant layer is stressed, as it is the concentration difference between the skin contamination layer and the perfused tissue that drives uptake. Methods for measuring uptake are currently not available. Measurement of mass, concentration, and the transport processes must be based on a theoretical model. Standardisation of methods of measurement of dermal exposure is strongly recommended.
Full Text
The Full Text of this article is available as a PDF (116.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anna D. H., Zellers E. T., Sulewski R. ASTM F739 method for testing the permeation resistance of protective clothing materials: critical analysis with proposed changes in procedure and test-cell design. Am Ind Hyg Assoc J. 1998 Aug;59(8):547–556. doi: 10.1080/15428119891010721. [DOI] [PubMed] [Google Scholar]
- Anzai I., Kikuchi T. A new monitoring technique of surface contamination--the test surface method. Health Phys. 1978 Mar;34(3):271–273. [PubMed] [Google Scholar]
- Archibald B. A., Solomon K. R., Stephenson G. R. A new procedure for calibrating the video imaging technique for assessing dermal exposure to pesticides. Arch Environ Contam Toxicol. 1994 Apr;26(3):398–402. doi: 10.1007/BF00203569. [DOI] [PubMed] [Google Scholar]
- Baird D. D., McConnaughey D. R., Weinberg C. R., Musey P. I., Collins D. C., Kesner J. S., Knecht E. A., Wilcox A. J. Application of a method for estimating day of ovulation using urinary estrogen and progesterone metabolites. Epidemiology. 1995 Sep;6(5):547–550. doi: 10.1097/00001648-199509000-00015. [DOI] [PubMed] [Google Scholar]
- Bierman E. P., Brouwer D. H., Van Hemmen J. J. Implementation and evaluation of the fluorescent tracer technique in greenhouse exposure studies. Ann Occup Hyg. 1998 Oct;42(7):467–475. doi: 10.1016/s0003-4878(98)00059-3. [DOI] [PubMed] [Google Scholar]
- Bos P. M., Brouwer D. H., Stevenson H., Boogaard P. J., de Kort W. L., van Hemmen J. J. Proposal for the assessment of quantitative dermal exposure limits in occupational environments: Part 1. Development of a concept to derive a quantitative dermal occupational exposure limit. Occup Environ Med. 1998 Dec;55(12):795–804. doi: 10.1136/oem.55.12.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brouwer D. H., Kroese R., Van Hemmen J. J. Transfer of contaminants from surface to hands: experimental assessment of linearity of the exposure process, adherence to the skin, and area exposed during fixed pressure and repeated contact with surfaces contaminated with a powder. Appl Occup Environ Hyg. 1999 Apr;14(4):231–239. doi: 10.1080/104732299303007. [DOI] [PubMed] [Google Scholar]
- Cherrie J. W., Robertson A. Biologically relevant assessment of dermal exposure. Ann Occup Hyg. 1995 Jun;39(3):387–392. doi: 10.1016/0003-4878(95)00016-8. [DOI] [PubMed] [Google Scholar]
- Cohen B. S., Popendorf W. A method for monitoring dermal exposure to volatile chemicals. Am Ind Hyg Assoc J. 1989 Apr;50(4):216–223. doi: 10.1080/15298668991374534. [DOI] [PubMed] [Google Scholar]
- DURHAM W. F., WOLFE H. R. Measurement of the exposure of workers to pesticides. Bull World Health Organ. 1962;26:75–91. [PMC free article] [PubMed] [Google Scholar]
- Farfel M. R., Lees P. S., Rohde C. A., Lim B. S., Bannon D., Chisolm J. J., Jr Comparison of a wipe and a vacuum collection method for the determination of lead in residential dusts. Environ Res. 1994 May;65(2):291–301. doi: 10.1006/enrs.1994.1038. [DOI] [PubMed] [Google Scholar]
- Fenske R. A., Birnbaum S. G. Second generation video imaging technique for assessing dermal exposure (VITAE System). Am Ind Hyg Assoc J. 1997 Sep;58(9):636–645. doi: 10.1080/15428119791012423. [DOI] [PubMed] [Google Scholar]
- Fenske R. A. Dermal exposure assessment techniques. Ann Occup Hyg. 1993 Dec;37(6):687–706. doi: 10.1093/annhyg/37.6.687. [DOI] [PubMed] [Google Scholar]
- Fenske R. A., Lu C. Determination of handwash removal efficiency: incomplete removal of the pesticide chlorpyrifos from skin by standard handwash techniques. Am Ind Hyg Assoc J. 1994 May;55(5):425–432. doi: 10.1080/15428119491018862. [DOI] [PubMed] [Google Scholar]
- Fenske R. A., van Hemmen J. J. Occupational skin exposure to chemical substances: setting limits. Ann Occup Hyg. 1994 Aug;38(4):333–336. doi: 10.1093/annhyg/38.4.333-a. [DOI] [PubMed] [Google Scholar]
- Finley B. L., Scott P. K., Mayhall D. A. Development of a standard soil-to-skin adherence probability density function for use in Monte Carlo analyses of dermal exposure. Risk Anal. 1994 Aug;14(4):555–569. doi: 10.1111/j.1539-6924.1994.tb00270.x. [DOI] [PubMed] [Google Scholar]
- Iwata Y., Knaak J. B., Spear R. C., Foster R. J. Worker reentry into pesticide-treated crops. I. Procedure for the determination of dislodgable pesticide residues on foliage. Bull Environ Contam Toxicol. 1977 Dec;18(6):649–655. doi: 10.1007/BF01691975. [DOI] [PubMed] [Google Scholar]
- McKone T. E., Howd R. A. Estimating dermal uptake of nonionic organic chemicals from water and soil: I. Unified fugacity-based models for risk assessments. Risk Anal. 1992 Dec;12(4):543–557. doi: 10.1111/j.1539-6924.1992.tb00711.x. [DOI] [PubMed] [Google Scholar]
- Roff M. W. A novel lighting system for the measurement of dermal exposure using a fluorescent dye and an image processor. Ann Occup Hyg. 1994 Dec;38(6):903–919. doi: 10.1093/annhyg/38.6.903. [DOI] [PubMed] [Google Scholar]
- Roff M. W. Accuracy and reproducibility of calibrations on the skin using the fives fluorescence monitor. Ann Occup Hyg. 1997 Jun;41(3):313–324. doi: 10.1016/s0003-4878(96)00041-5. [DOI] [PubMed] [Google Scholar]
- Roper C. S., Howes D., Blain P. G., Williams F. M. Percutaneous penetration of 2-phenoxyethanol through rat and human skin. Food Chem Toxicol. 1997 Oct-Nov;35(10-11):1009–1016. doi: 10.1016/s0278-6915(97)00109-9. [DOI] [PubMed] [Google Scholar]
- Sartorelli P., Aprea C., Cenni A., Novelli M. T., Orsi D., Palmi S., Matteucci G. Prediction of percutaneous absorption from physicochemical data: a model based on data of in vitro experiments. Ann Occup Hyg. 1998 May;42(4):267–276. doi: 10.1016/s0003-4878(98)00021-0. [DOI] [PubMed] [Google Scholar]
- Schneider T., Stokholm J. Accumulation of fibers in the eyes of workers handling man-made mineral fiber products. Scand J Work Environ Health. 1981 Dec;7(4):271–276. doi: 10.5271/sjweh.2547. [DOI] [PubMed] [Google Scholar]
- Wheeler J. P., Stancliffe J. D. Comparison of methods for monitoring solid particulate surface contamination in the workplace. Ann Occup Hyg. 1998 Oct;42(7):477–488. doi: 10.1016/s0003-4878(98)00057-x. [DOI] [PubMed] [Google Scholar]
- Yang Y., Li S. Frictional transition of pesticides from protective clothing. Arch Environ Contam Toxicol. 1993 Aug;25(2):279–284. doi: 10.1007/BF00212142. [DOI] [PubMed] [Google Scholar]
- Zweig G., Leffingwell J. T., Popendorf W. The relationship between dermal pesticide exposure by fruit harvesters and dislodgeable foliar residues. J Environ Sci Health B. 1985 Feb;20(1):27–59. doi: 10.1080/03601238509372467. [DOI] [PubMed] [Google Scholar]