Abstract
OBJECTIVES: Ozone (O3) imposes an oxidative burden on the lung in two ways. Firstly, directly as a consequence of its oxidising character during exposure, and secondly, indirectly by engendering inflammation. In this study the second pathway was considered by ascertaining the impact of O3 on the redox state of the fluid lining the respiratory tract 6 hours after challenge. METHODS: Nine subjects were exposed in a double blind crossover control trial to air and 200 ppb O3 for 2 hours with an intermittent exercise and rest protocol. Blood samples were obtained and lung function (forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1)) assessed before, immediately after, and 6 hours after exposure. Bronchoalveolar lavage (BAL) was performed 6 hours after challenge. Inflammation was assessed in BAL fluid (total and differential cell counts, plus myeloperoxidase concentrations), and plasma and BAL fluid redox state were determined by measuring concentrations of antioxidants and markers of oxidative damage. RESULTS: Neutrophil numbers in BAL fluid increased 2.2-fold (p = 0.07) 6 hours after exposure and this was accompanied by increased myeloperoxidase concentrations in BAL fluid (p = 0.08). On the other hand, BAL fluid macrophage and lymphocyte numbers decreased 2.5-fold (p = 0.08) and 3.1-fold (p = 0.08), respectively at this time. Of the antioxidants examined, only ascorbate in BAL fluid was affected by O3, falling in all subjects relative to air values (0.1 (0.0-0.3) v 0.3 (0.2-1.2) mumol/l (p = 0.008)). A marginal decrease in plasma ascorbate was also detected at this time (p < 0.05). Although the decrease in macrophage numbers seemed to be causally related to the increase in neutrophils (R = -0.79), myeloperoxidase concentrations (R = -0.93) and ascorbate concentrations (R = 0.6), no clear associations were apparent between ascorbate changes and neutrophils or myeloperoxidase concentration after O3. CONCLUSIONS: Ascorbate in the fluid lining the respiratory tract is depleted as a consequence of O3 exposure at 6 hours after exposure. This was contemporaneous with, although not quantitatively related to the increase in neutrophil numbers and myeloperoxidase concentrations. Decreased macrophage numbers 6 hours after O3 related to the degree of neutrophilic inflammation with populations conserved where ascorbate concentration in the fluid lining the respiratory tract were high after exposure. These results imply that ascorbate has a critical protective role against inflammatory oxidative stress induced by O3.
Full Text
The Full Text of this article is available as a PDF (140.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aris R. M., Christian D., Hearne P. Q., Kerr K., Finkbeiner W. E., Balmes J. R. Ozone-induced airway inflammation in human subjects as determined by airway lavage and biopsy. Am Rev Respir Dis. 1993 Nov;148(5):1363–1372. doi: 10.1164/ajrccm/148.5.1363. [DOI] [PubMed] [Google Scholar]
- Baker M. A., Cerniglia G. J., Zaman A. Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal Biochem. 1990 Nov 1;190(2):360–365. doi: 10.1016/0003-2697(90)90208-q. [DOI] [PubMed] [Google Scholar]
- Barnes P. J. Reactive oxygen species and airway inflammation. Free Radic Biol Med. 1990;9(3):235–243. doi: 10.1016/0891-5849(90)90034-g. [DOI] [PubMed] [Google Scholar]
- Bieri J. G., Tolliver T. J., Catignani G. L. Simultaneous determination of alpha-tocopherol and retinol in plasma or red cells by high pressure liquid chromatography. Am J Clin Nutr. 1979 Oct;32(10):2143–2149. doi: 10.1093/ajcn/32.10.2143. [DOI] [PubMed] [Google Scholar]
- Chirico S. High-performance liquid chromatography-based thiobarbituric acid tests. Methods Enzymol. 1994;233:314–318. doi: 10.1016/s0076-6879(94)33035-2. [DOI] [PubMed] [Google Scholar]
- Chow C. K., Thacker R. R., Changchit C., Bridges R. B., Rehm S. R., Humble J., Turbek J. Lower levels of vitamin C and carotenes in plasma of cigarette smokers. J Am Coll Nutr. 1986;5(3):305–312. doi: 10.1080/07315724.1986.10720134. [DOI] [PubMed] [Google Scholar]
- Cross C. E., Forte T., Stocker R., Louie S., Yamamoto Y., Ames B. N., Frei B. Oxidative stress and abnormal cholesterol metabolism in patients with adult respiratory distress syndrome. J Lab Clin Med. 1990 Apr;115(4):396–404. [PubMed] [Google Scholar]
- Frei B. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage. Am J Clin Nutr. 1991 Dec;54(6 Suppl):1113S–1118S. doi: 10.1093/ajcn/54.6.1113s. [DOI] [PubMed] [Google Scholar]
- Frei B., Forte T. M., Ames B. N., Cross C. E. Gas phase oxidants of cigarette smoke induce lipid peroxidation and changes in lipoprotein properties in human blood plasma. Protective effects of ascorbic acid. Biochem J. 1991 Jul 1;277(Pt 1):133–138. doi: 10.1042/bj2770133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giamalva D., Church D. F., Pryor W. A. A comparison of the rates of ozonation of biological antioxidants and oleate and linoleate esters. Biochem Biophys Res Commun. 1985 Dec 17;133(2):773–779. doi: 10.1016/0006-291x(85)90971-4. [DOI] [PubMed] [Google Scholar]
- Health effects of outdoor air pollution. Committee of the Environmental and Occupational Health Assembly of the American Thoracic Society. Am J Respir Crit Care Med. 1996 Jan;153(1):3–50. doi: 10.1164/ajrccm.153.1.8542133. [DOI] [PubMed] [Google Scholar]
- Iriyama K., Yoshiura M., Iwamoto T., Ozaki Y. Simultaneous determination of uric and ascorbic acids in human serum by reversed-phase high-performance liquid chromatography with electrochemical detection. Anal Biochem. 1984 Aug 15;141(1):238–243. doi: 10.1016/0003-2697(84)90451-2. [DOI] [PubMed] [Google Scholar]
- Kelly F. J., Blomberg A., Frew A., Holgate S. T., Sandstrom T. Antioxidant kinetics in lung lavage fluid following exposure of humans to nitrogen dioxide. Am J Respir Crit Care Med. 1996 Dec;154(6 Pt 1):1700–1705. doi: 10.1164/ajrccm.154.6.8970358. [DOI] [PubMed] [Google Scholar]
- Kelly F. J., Mudway I., Krishna M. T., Holgate S. T. The free radical basis of air pollution: focus on ozone. Respir Med. 1995 Nov;89(10):647–656. doi: 10.1016/0954-6111(95)90131-0. [DOI] [PubMed] [Google Scholar]
- Koren H. S., Hatch G. E., Graham D. E. Nasal lavage as a tool in assessing acute inflammation in response to inhaled pollutants. Toxicology. 1990 Jan-Feb;60(1-2):15–25. doi: 10.1016/0300-483x(90)90159-e. [DOI] [PubMed] [Google Scholar]
- Langford S. D., Bidani A., Postlethwait E. M. Ozone-reactive absorption by pulmonary epithelial lining fluid constituents. Toxicol Appl Pharmacol. 1995 May;132(1):122–130. doi: 10.1006/taap.1995.1093. [DOI] [PubMed] [Google Scholar]
- Mudway I. S., Housley D., Eccles R., Richards R. J., Datta A. K., Tetley T. D., Kelly F. J. Differential depletion of human respiratory tract antioxidants in response to ozone challenge. Free Radic Res. 1996 Dec;25(6):499–513. doi: 10.3109/10715769609149072. [DOI] [PubMed] [Google Scholar]
- Postlethwait E. M., Langford S. D., Bidani A. Determinants of inhaled ozone absorption in isolated rat lungs. Toxicol Appl Pharmacol. 1994 Mar;125(1):77–89. doi: 10.1006/taap.1994.1051. [DOI] [PubMed] [Google Scholar]
- Pryor W. A. Mechanisms of radical formation from reactions of ozone with target molecules in the lung. Free Radic Biol Med. 1994 Nov;17(5):451–465. doi: 10.1016/0891-5849(94)90172-4. [DOI] [PubMed] [Google Scholar]
- Pryor W. A. Ozone in all its reactive splendor. J Lab Clin Med. 1993 Nov;122(5):483–486. [PubMed] [Google Scholar]
- Pryor W. A., Squadrito G. L., Friedman M. The cascade mechanism to explain ozone toxicity: the role of lipid ozonation products. Free Radic Biol Med. 1995 Dec;19(6):935–941. doi: 10.1016/0891-5849(95)02033-7. [DOI] [PubMed] [Google Scholar]
- Reznick A. Z., Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 1994;233:357–363. doi: 10.1016/s0076-6879(94)33041-7. [DOI] [PubMed] [Google Scholar]
- Schelegle E. S., Siefkin A. D., McDonald R. J. Time course of ozone-induced neutrophilia in normal humans. Am Rev Respir Dis. 1991 Jun;143(6):1353–1358. doi: 10.1164/ajrccm/143.6.1353. [DOI] [PubMed] [Google Scholar]
- Slade R., Crissman K., Norwood J., Hatch G. Comparison of antioxidant substances in bronchoalveolar lavage cells and fluid from humans, guinea pigs, and rats. Exp Lung Res. 1993 Jul-Aug;19(4):469–484. doi: 10.3109/01902149309064358. [DOI] [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Vera J. C., Rivas C. I., Fischbarg J., Golde D. W. Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Nature. 1993 Jul 1;364(6432):79–82. doi: 10.1038/364079a0. [DOI] [PubMed] [Google Scholar]
- Wayner D. D., Burton G. W., Ingold K. U., Barclay L. R., Locke S. J. The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochim Biophys Acta. 1987 Jun 22;924(3):408–419. doi: 10.1016/0304-4165(87)90155-3. [DOI] [PubMed] [Google Scholar]
- Wiester M. J., Tepper J. S., Winsett D. W., Crissman K. M., Richards J. H., Costa D. L. Adaptation to ozone in rats and its association with ascorbic acid in the lung. Fundam Appl Toxicol. 1996 May;31(1):56–64. doi: 10.1006/faat.1996.0075. [DOI] [PubMed] [Google Scholar]