Skip to main content
Sexually Transmitted Infections logoLink to Sexually Transmitted Infections
. 1999 Jun;75(3):181–185. doi: 10.1136/sti.75.3.181

Hydrogels containing monocaprin have potent microbicidal activities against sexually transmitted viruses and bacteria in vitro

H Thormar, G Bergsson, E Gunnarsson, G Georgsson, M Witvrouw, O Steingrimsson, E De Clercq, T Kristmundsdottir
PMCID: PMC1758207  PMID: 10448397

Abstract

OBJECTIVE: To investigate the in vitro microbicidal and cytocidal potency of monocaprin dissolved in pharmaceutical hydrogel formulations and to evaluate their potential use as vaginal microbicides against sexually transmitted pathogens such as herpes simplex virus type 2 (HSV-2), human immunodeficiency virus type 1 (HIV-1), Chlamydia trachomatis, and Neisseria gonorrhoeae. METHODS: Gel formulations were mixed with equal volumes of virus/bacteria suspensions in culture medium and incubated for 1 and 5 minutes. The reduction in virus/bacteria titre was used as a measure of microbicidal activity. Similarly, gels were mixed with human semen to study their effect on leucocytes. The toxicity of the gels was tested in rabbits by the standard vaginal irritation test. RESULTS: Gels containing 20 mM of monocaprin caused a greater than 100,000-fold inactivation of HSV-2 and Neisseria in 1 minute and of Chlamydia in 5 minutes. Similarly, the gels caused a greater than 10,000-fold inactivation of HIV-1 in semen in 1 minute. They caused more than a 10,000-fold reduction in the number of viable leucocytes in semen in 1 minute. No toxic effect on the vaginal mucosa of rabbits was observed after daily exposure for 10 days. CONCLUSIONS: Hydrogels containing monocaprin are potent inactivators of sexually transmitted viruses and bacteria in vitro. This simple lipid seems to be a feasible choice as a mucosal microbicide for prevention of sexually transmitted infections. It is a natural compound found in certain foodstuffs such as milk and is therefore unlikely to cause harmful side effects in the concentrations used. 




Full Text

The Full Text of this article is available as a PDF (91.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asculai S. S., Weis M. T., Rancourt M. W., Kupferberg A. B. Inactivation of herpes simplex viruses by nonionic surfactants. Antimicrob Agents Chemother. 1978 Apr;13(4):686–690. doi: 10.1128/aac.13.4.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benes S., McCormack W. M. Inhibition of growth of Chlamydia trachomatis by nonoxynol-9 in vitro. Antimicrob Agents Chemother. 1985 May;27(5):724–726. doi: 10.1128/aac.27.5.724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bergsson G., Arnfinnsson J., Karlsson S. M., Steingrímsson O., Thormar H. In vitro inactivation of Chlamydia trachomatis by fatty acids and monoglycerides. Antimicrob Agents Chemother. 1998 Sep;42(9):2290–2294. doi: 10.1128/aac.42.9.2290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Isaacs Charles E., Litov Richard E., Thormar Halldor. Antimicrobial activity of lipids added to human milk, infant formula, and bovine milk. J Nutr Biochem. 1995 Jul;6(7):362–366. doi: 10.1016/0955-2863(95)80003-u. [DOI] [PubMed] [Google Scholar]
  5. Krieger J. N., Coombs R. W., Collier A. C., Ross S. O., Chaloupka K., Cummings D. K., Murphy V. L., Corey L. Recovery of human immunodeficiency virus type 1 from semen: minimal impact of stage of infection and current antiviral chemotherapy. J Infect Dis. 1991 Feb;163(2):386–388. doi: 10.1093/infdis/163.2.386. [DOI] [PubMed] [Google Scholar]
  6. Lampe M. F., Ballweber L. M., Stamm W. E. Susceptibility of Chlamydia trachomatis to chlorhexidine gluconate gel. Antimicrob Agents Chemother. 1998 Jul;42(7):1726–1730. doi: 10.1128/aac.42.7.1726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lyons J. M., Ito J. I., Jr Reducing the risk of Chlamydia trachomatis genital tract infection by evaluating the prophylactic potential of vaginally applied chemicals. Clin Infect Dis. 1995 Oct;21 (Suppl 2):S174–S177. doi: 10.1093/clinids/21.supplement_2.s174. [DOI] [PubMed] [Google Scholar]
  8. Malkovsky M., Newell A., Dalgleish A. G. Inactivation of HIV by nonoxynol-9. Lancet. 1988 Mar 19;1(8586):645–645. doi: 10.1016/s0140-6736(88)91440-7. [DOI] [PubMed] [Google Scholar]
  9. Miller C. J., Alexander N. J., Gettie A., Hendrickx A. G., Marx P. A. The effect of contraceptives containing nonoxynol-9 on the genital transmission of simian immunodeficiency virus in rhesus macaques. Fertil Steril. 1992 May;57(5):1126–1128. [PubMed] [Google Scholar]
  10. Niruthisard S., Roddy R. E., Chutivongse S. The effects of frequent nonoxynol-9 use on the vaginal and cervical mucosa. Sex Transm Dis. 1991 Jul-Sep;18(3):176–179. doi: 10.1097/00007435-199107000-00010. [DOI] [PubMed] [Google Scholar]
  11. Pearce-Pratt R., Phillips D. M. Studies of adhesion of lymphocytic cells: implications for sexual transmission of human immunodeficiency virus. Biol Reprod. 1993 Mar;48(3):431–445. doi: 10.1095/biolreprod48.3.431. [DOI] [PubMed] [Google Scholar]
  12. Popovic M., Sarngadharan M. G., Read E., Gallo R. C. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science. 1984 May 4;224(4648):497–500. doi: 10.1126/science.6200935. [DOI] [PubMed] [Google Scholar]
  13. Roddy R. E., Cordero M., Cordero C., Fortney J. A. A dosing study of nonoxynol-9 and genital irritation. Int J STD AIDS. 1993 May-Jun;4(3):165–170. doi: 10.1177/095646249300400308. [DOI] [PubMed] [Google Scholar]
  14. Rosenberg M. J., Holmes K. K. Virucides in prevention of HIV infection. Research Priorities. World Health Organization Working Group on Virucides. Sex Transm Dis. 1993 Jan-Feb;20(1):41–44. doi: 10.1097/00007435-199301000-00008. [DOI] [PubMed] [Google Scholar]
  15. Singh B., Cutler J. C. The effect of vaginal lubricants on Neisseria gonorrhoeae. Am J Obstet Gynecol. 1976 Oct 1;126(3):365–369. doi: 10.1016/0002-9378(76)90551-2. [DOI] [PubMed] [Google Scholar]
  16. Singh B., Cutler J. C., Utidjian H. M. Studies on the development of a vaginal preparation providing both prophylaxis against venereal disease and other genital infections and contraception. II. Effect in vitro of vaginal contraceptive and non-contraceptive preparations on Treponema pallidum and Neisseria gonorrhoeae. Br J Vener Dis. 1972 Feb;48(1):57–64. doi: 10.1136/sti.48.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Singh B., Posti B., Cutler J. C. Virucidal effect of certain chemical contraceptives on Type 2 herpesvirus. Am J Obstet Gynecol. 1976 Oct 15;126(4):422–425. doi: 10.1016/0002-9378(76)90630-x. [DOI] [PubMed] [Google Scholar]
  18. Thormar H., Isaacs C. E., Brown H. R., Barshatzky M. R., Pessolano T. Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrob Agents Chemother. 1987 Jan;31(1):27–31. doi: 10.1128/aac.31.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Weir S. S., Roddy R. E., Zekeng L., Feldblum P. J. Nonoxynol-9 use, genital ulcers, and HIV infection in a cohort of sex workers. Genitourin Med. 1995 Apr;71(2):78–81. doi: 10.1136/sti.71.2.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Welsh J. K., Arsenakis M., Coelen R. J., May J. T. Effect of antiviral lipids, heat, and freezing on the activity of viruses in human milk. J Infect Dis. 1979 Sep;140(3):322–328. doi: 10.1093/infdis/140.3.322. [DOI] [PubMed] [Google Scholar]
  21. Wolff H. The biologic significance of white blood cells in semen. Fertil Steril. 1995 Jun;63(6):1143–1157. doi: 10.1016/s0015-0282(16)57588-8. [DOI] [PubMed] [Google Scholar]
  22. Zekeng L., Feldblum P. J., Oliver R. M., Kaptue L. Barrier contraceptive use and HIV infection among high-risk women in Cameroon. AIDS. 1993 May;7(5):725–731. doi: 10.1097/00002030-199305000-00018. [DOI] [PubMed] [Google Scholar]

Articles from Sexually Transmitted Infections are provided here courtesy of BMJ Publishing Group

RESOURCES