Skip to main content
Sexually Transmitted Infections logoLink to Sexually Transmitted Infections
. 1999 Aug;75(4):231–238. doi: 10.1136/sti.75.4.231

Trichomonad invasion of the mucous layer requires adhesins, mucinases, and motility

M W Lehker, D Sweeney
PMCID: PMC1758222  PMID: 10615308

Abstract

BACKGROUND/OBJECTIVE: Trichomonas vaginalis, the causal agent of trichomonosis, is a flagellated parasitic protozoan that colonises the epithelial cells of the human urogenital tract. The ability of T vaginalis to colonise this site is in part a function of its ability to circumvent a series of non-specific host defences including the mucous layer covering epithelial cells at the site of infection. Mucin, the framework molecule of mucus, forms a lattice structure that serves as a formidable physical barrier to microbial invasion. The mechanism by which trichomonads traverse the mucous covering is unknown. Proteolytic degradation of mucin, however, may provide for a mechanism to penetrate this layer. The goal, therefore, was to determine how trichomonads cross through a mucous layer. METHODS: Secreted trichomonad proteinases were analysed for mucinase activity by mucin substrate-sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The importance of trichomonad mucinases for traversing the mucous layer was examined on an artificial mucin layer in invasion chambers. Adherence to mucin and tissue culture cells was measured using a microtitre plate assay. RESULTS: Trichomonad isolate 24402 secreted five proteinases when incubated in PBS. All five proteinases were shown to possess mucinase activity. These mucinases were able to degrade bovine submaxillary mucin and to a lesser extent porcine stomach mucin. These enzymes were active over a pH range of 4.5-7.0 and were inhibited with cysteine proteinase inhibitors. Furthermore, T vaginalis was shown to bind to mucin possibly via a lectin-like adhesin. Adherence to mucin was increased threefold when parasites were grown in iron deficient medium. Adherence to soluble mucin prevented attachment to HeLa cells. Proteinase activity, adherence, and motility were required for trichomonads to traverse a mucin layer in vitro. CONCLUSIONS: These results show that trichomonads can traverse the mucous barrier first by binding mucin followed by its proteolytic degradation. The data further underscore the importance of trichomonad proteinases in the pathogenesis of trichomonosis. Finally, this study suggests that interference with trichomonad mucin receptors and proteinases may be a strategy to prevent colonisation by this parasite. 




Full Text

The Full Text of this article is available as a PDF (136.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alderete J. F., Garza G. E. Identification and properties of Trichomonas vaginalis proteins involved in cytadherence. Infect Immun. 1988 Jan;56(1):28–33. doi: 10.1128/iai.56.1.28-33.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alderete J. F., Newton E., Dennis C., Neale K. A. The vagina of women infected with Trichomonas vaginalis has numerous proteinases and antibody to trichomonad proteinases. Genitourin Med. 1991 Dec;67(6):469–474. doi: 10.1136/sti.67.6.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alderete J. F., Provenzano D., Lehker M. W. Iron mediates Trichomonas vaginalis resistance to complement lysis. Microb Pathog. 1995 Aug;19(2):93–103. doi: 10.1006/mpat.1995.0049. [DOI] [PubMed] [Google Scholar]
  4. Alderete J. F., Provenzano D. The vagina has reducing environment sufficient for activation of Trichomonas vaginalis cysteine proteinases. Genitourin Med. 1997 Aug;73(4):291–296. doi: 10.1136/sti.73.4.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Arroyo R., Alderete J. F. Trichomonas vaginalis surface proteinase activity is necessary for parasite adherence to epithelial cells. Infect Immun. 1989 Oct;57(10):2991–2997. doi: 10.1128/iai.57.10.2991-2997.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Babál P., Pindak F. F., Wells D. J., Gardner W. A., Jr Purification and characterization of a sialic acid-specific lectin from Tritrichomonas mobilensis. Biochem J. 1994 Apr 15;299(Pt 2):341–346. doi: 10.1042/bj2990341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Barbone F., Austin H., Louv W. C., Alexander W. J. A follow-up study of methods of contraception, sexual activity, and rates of trichomoniasis, candidiasis, and bacterial vaginosis. Am J Obstet Gynecol. 1990 Aug;163(2):510–514. doi: 10.1016/0002-9378(90)91186-g. [DOI] [PubMed] [Google Scholar]
  8. Belley A., Keller K., Grove J., Chadee K. Interaction of LS174T human colon cancer cell mucins with Entamoeba histolytica: an in vitro model for colonic disease. Gastroenterology. 1996 Dec;111(6):1484–1492. doi: 10.1016/s0016-5085(96)70009-4. [DOI] [PubMed] [Google Scholar]
  9. Carlstedt I., Lindgren H., Sheehan J. K. The macromolecular structure of human cervical-mucus glycoproteins. Studies on fragments obtained after reduction of disulphide bridges and after subsequent trypsin digestion. Biochem J. 1983 Aug 1;213(2):427–435. doi: 10.1042/bj2130427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chadee K., Ndarathi C., Keller K. Binding of proteolytically-degraded human colonic mucin glycoproteins to the Gal/GalNAc adherence lectin of Entamoeba histolytica. Gut. 1990 Aug;31(8):890–895. doi: 10.1136/gut.31.8.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chadee K., Petri W. A., Jr, Innes D. J., Ravdin J. I. Rat and human colonic mucins bind to and inhibit adherence lectin of Entamoeba histolytica. J Clin Invest. 1987 Nov;80(5):1245–1254. doi: 10.1172/JCI113199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Coley H. M., Lewandowicz G., Sargent J. M., Verrill M. W. Chemosensitivity testing of fresh and continuous tumor cell cultures using lactate dehydrogenase. Anticancer Res. 1997 Jan-Feb;17(1A):231–236. [PubMed] [Google Scholar]
  13. Colina A. R., Aumont F., Deslauriers N., Belhumeur P., de Repentigny L. Evidence for degradation of gastrointestinal mucin by Candida albicans secretory aspartyl proteinase. Infect Immun. 1996 Nov;64(11):4514–4519. doi: 10.1128/iai.64.11.4514-4519.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Coombs G. H., North M. J. An analysis of the proteinases of Trichomonas vaginalis by polyacrylamide gel electrophoresis. Parasitology. 1983 Feb;86(Pt 1):1–6. doi: 10.1017/s0031182000057103. [DOI] [PubMed] [Google Scholar]
  15. DIAMOND L. S. The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol. 1957 Aug;43(4):488–490. [PubMed] [Google Scholar]
  16. Gerken T. A. Biophysical approaches to salivary mucin structure, conformation and dynamics. Crit Rev Oral Biol Med. 1993;4(3-4):261–270. doi: 10.1177/10454411930040030201. [DOI] [PubMed] [Google Scholar]
  17. Gorrell T. E. Effect of culture medium iron content on the biochemical composition and metabolism of Trichomonas vaginalis. J Bacteriol. 1985 Mar;161(3):1228–1230. doi: 10.1128/jb.161.3.1228-1230.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Heine P., McGregor J. A. Trichomonas vaginalis: a reemerging pathogen. Clin Obstet Gynecol. 1993 Mar;36(1):137–144. doi: 10.1097/00003081-199303000-00019. [DOI] [PubMed] [Google Scholar]
  19. Heussen C., Dowdle E. B. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem. 1980 Feb;102(1):196–202. doi: 10.1016/0003-2697(80)90338-3. [DOI] [PubMed] [Google Scholar]
  20. Krieger J. N., Torian B. E., Hom J., Tam M. R. Inhibition of Trichomonas vaginalis motility by monoclonal antibodies is associated with reduced adherence to HeLa cell monolayers. Infect Immun. 1990 Jun;58(6):1634–1639. doi: 10.1128/iai.58.6.1634-1639.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lamblin G., Roussel P. Airway mucins and their role in defence against micro-organisms. Respir Med. 1993 Aug;87(6):421–426. doi: 10.1016/0954-6111(93)90067-a. [DOI] [PubMed] [Google Scholar]
  23. Lehker M. W., Alderete J. F. Iron regulates growth of Trichomonas vaginalis and the expression of immunogenic trichomonad proteins. Mol Microbiol. 1992 Jan;6(1):123–132. doi: 10.1111/j.1365-2958.1992.tb00844.x. [DOI] [PubMed] [Google Scholar]
  24. Lehker M. W., Arroyo R., Alderete J. F. The regulation by iron of the synthesis of adhesins and cytoadherence levels in the protozoan Trichomonas vaginalis. J Exp Med. 1991 Aug 1;174(2):311–318. doi: 10.1084/jem.174.2.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mantle M., Husar S. D. Binding of Yersinia enterocolitica to purified, native small intestinal mucins from rabbits and humans involves interactions with the mucin carbohydrate moiety. Infect Immun. 1994 Apr;62(4):1219–1227. doi: 10.1128/iai.62.4.1219-1227.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mantle M., Rombough C. Growth in and breakdown of purified rabbit small intestinal mucin by Yersinia enterocolitica. Infect Immun. 1993 Oct;61(10):4131–4138. doi: 10.1128/iai.61.10.4131-4138.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Neale K. A., Alderete J. F. Analysis of the proteinases of representative Trichomonas vaginalis isolates. Infect Immun. 1990 Jan;58(1):157–162. doi: 10.1128/iai.58.1.157-162.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. North M. J., Robertson C. D., Coombs G. H. The specificity of trichomonad cysteine proteinases analysed using fluorogenic substrates and specific inhibitors. Mol Biochem Parasitol. 1990 Mar;39(2):183–193. doi: 10.1016/0166-6851(90)90057-s. [DOI] [PubMed] [Google Scholar]
  29. North M. J. The characteristics of cysteine proteinases of parasitic protozoa. Biol Chem Hoppe Seyler. 1992 Jul;373(7):401–406. doi: 10.1515/bchm3.1992.373.2.401. [DOI] [PubMed] [Google Scholar]
  30. Reddy M. S. Human tracheobronchial mucin: purification and binding to Pseudomonas aeruginosa. Infect Immun. 1992 Apr;60(4):1530–1535. doi: 10.1128/iai.60.4.1530-1535.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ricci L. R., Hoffman S. A. Prostatic acid phosphatase and sperm in the post-coital vagina. Ann Emerg Med. 1982 Oct;11(10):530–534. doi: 10.1016/s0196-0644(82)80424-1. [DOI] [PubMed] [Google Scholar]
  32. Sajjan S. U., Forstner J. F. Characteristics of binding of Escherichia coli serotype O157:H7 strain CL-49 to purified intestinal mucin. Infect Immun. 1990 Apr;58(4):860–867. doi: 10.1128/iai.58.4.860-867.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Slomiany B. L., Slomiany A. Mechanism of Helicobacter pylori pathogenesis: focus on mucus. J Clin Gastroenterol. 1992;14 (Suppl 1):S114–S121. [PubMed] [Google Scholar]
  34. Stevens-Simon C., Jamison J., McGregor J. A., Douglas J. M. Racial variation in vaginal pH among healthy sexually active adolescents. Sex Transm Dis. 1994 May-Jun;21(3):168–172. doi: 10.1097/00007435-199405000-00007. [DOI] [PubMed] [Google Scholar]
  35. Styrt B., Sugarman B., Mummaw N., White J. C. Chemorepulsion of trichomonads by products of neutrophil oxidative metabolism. J Infect Dis. 1991 Jan;163(1):176–179. doi: 10.1093/infdis/163.1.176. [DOI] [PubMed] [Google Scholar]
  36. Tzouvelekis L. S., Mentis A. F., Makris A. M., Spiliadis C., Blackwell C., Weir D. M. In vitro binding of Helicobacter pylori to human gastric mucin. Infect Immun. 1991 Nov;59(11):4252–4254. doi: 10.1128/iai.59.11.4252-4254.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wallace-Haagens M. J., Duffy B. J., Jr, Holtrop H. R. Recovery of spermatozoa from human vaginal washings. Fertil Steril. 1975 Feb;26(2):175–179. [PubMed] [Google Scholar]

Articles from Sexually Transmitted Infections are provided here courtesy of BMJ Publishing Group

RESOURCES