Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1987 Dec;31(12):1904–1908. doi: 10.1128/aac.31.12.1904

High-performance liquid chromatography measurement of antimicrobial concentrations in polymorphonuclear leukocytes.

H Koga 1
PMCID: PMC175825  PMID: 3439800

Abstract

High-performance liquid chromatography was used to determine the penetration of 19 antimicrobial agents into human polymorphonuclear leukocytes. The ratios of the intracellular concentration to the extracellular concentration of ampicillin, piperacillin, cefazolin, ceftizoxime, cefpimizole, and ceftazidime were all less than 0.6. Lincomycin showed a high intracellular-to-extracellular ratio (3.0), while clindamycin achieved a ratio of 15.5, which was the highest ratio of all of the 19 tested antibiotics. Ratios for rifampin, isoniazid, chloramphenicol, and trimethoprim were 8.2, 1.1, 9.6, and 6.1, respectively. Six quinolone-class antimicrobial agents had ratios from 2.2 to 8.2. Flucytosine showed a penetration ratio of 4.6. Clindamycin uptake was temperature dependent and occurred best with live polymorphonuclear leukocytes; sodium fluoride, adenosine, and puromycin were inhibitory. The results obtained in this study correlate well with the results of other studies involving radioisotopic methods. This indicates that high-performance liquid chromatography is a useful method for determining the intracellular penetration of antimicrobial agents.

Full text

PDF
1904

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anhalt J. P., Brown S. D. High-performance liquid-chromatographic assay of aminoglycoside antibiotics in serum. Clin Chem. 1978 Nov;24(11):1940–1947. [PubMed] [Google Scholar]
  2. Bonventre P. F., Imhoff J. G. Uptake of h-dihydrostreptomycin by macrophages in culture. Infect Immun. 1970 Jul;2(1):89–95. doi: 10.1128/iai.2.1.89-95.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Freedman M. H., Raff M. C. Induction of increased calcium uptake in mouse T lymphocytes by concanavalin A and its modulation by cyclic nucleotides. Nature. 1975 May 29;255(5507):378–382. doi: 10.1038/255378a0. [DOI] [PubMed] [Google Scholar]
  4. Hand W. L., King-Thompson N. L. Membrane transport of clindamycin in alveolar macrophages. Antimicrob Agents Chemother. 1982 Feb;21(2):241–247. doi: 10.1128/aac.21.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hand W. L., King-Thompson N. L., Steinberg T. H. Interactions of antibiotics and phagocytes. J Antimicrob Chemother. 1983 Oct;12 (Suppl 100):1–11. doi: 10.1093/jac/12.suppl_c.1. [DOI] [PubMed] [Google Scholar]
  6. Jacobs R. F., Wilson C. B. Intracellular penetration and antimicrobial activity of antibiotics. J Antimicrob Chemother. 1983 Oct;12 (Suppl 100):13–20. doi: 10.1093/jac/12.suppl_c.13. [DOI] [PubMed] [Google Scholar]
  7. Johnson J. D., Hand W. L., Francis J. B., King-Thompson N., Corwin R. W. Antibiotic uptake by alveolar macrophages. J Lab Clin Med. 1980 Mar;95(3):429–439. [PubMed] [Google Scholar]
  8. Klempner M. S., Styrt B. Clindamycin uptake by human neutrophils. J Infect Dis. 1981 Nov;144(5):472–479. doi: 10.1093/infdis/144.5.472. [DOI] [PubMed] [Google Scholar]
  9. Mandell G. L. Interaction of intraleukocytic bacteria and antibiotics. J Clin Invest. 1973 Jul;52(7):1673–1679. doi: 10.1172/JCI107348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mandell G. L., Vest T. K. Killing of intraleukocytic Staphylococcus aureus by rifampin: in-vitro and in-vivo studies. J Infect Dis. 1972 May;125(5):486–490. doi: 10.1093/infdis/125.5.486. [DOI] [PubMed] [Google Scholar]
  11. Prokesch R. C., Hand W. L. Antibiotic entry into human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1982 Mar;21(3):373–380. doi: 10.1128/aac.21.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Saito A., Koga H., Shigeno H., Watanabe K., Mori K., Kohno S., Shigeno Y., Suzuyama Y., Yamaguchi K., Hirota M. The antimicrobial activity of ciprofloxacin against Legionella species and the treatment of experimental Legionella pneumonia in guinea pigs. J Antimicrob Chemother. 1986 Aug;18(2):251–260. doi: 10.1093/jac/18.2.251. [DOI] [PubMed] [Google Scholar]
  13. Saito A., Sawatari K., Fukuda Y., Nagasawa M., Koga H., Tomonaga A., Nakazato H., Fujita K., Shigeno Y., Suzuyama Y. Susceptibility of Legionella pneumophila to ofloxacin in vitro and in experimental Legionella pneumonia in guinea pigs. Antimicrob Agents Chemother. 1985 Jul;28(1):15–20. doi: 10.1128/aac.28.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Steinberg T. H., Hand W. L. Effects of phagocytosis on antibiotic and nucleoside uptake by human polymorphonuclear leukocytes. J Infect Dis. 1984 Mar;149(3):397–403. doi: 10.1093/infdis/149.3.397. [DOI] [PubMed] [Google Scholar]
  15. Tsuji K. Fluorimetric determination of erythromycin and erythromycin ethylsuccinate in serum by a high-performance liquid chromatographic post-column, on-stream derivatization and extraction method. J Chromatogr. 1978 Oct 1;158:337–348. doi: 10.1016/s0021-9673(00)89978-1. [DOI] [PubMed] [Google Scholar]
  16. Vaudaux P., Waldvogel F. A. Gentamicin antibacterial activity in the presence of human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1979 Dec;16(6):743–749. doi: 10.1128/aac.16.6.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Walker S. E., Coates P. E. High-performance liquid chromatographic methods for determination of gentamicin in biological fluids. J Chromatogr. 1981 Apr 10;223(1):131–138. doi: 10.1016/s0378-4347(00)80075-4. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES