Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1987 Dec;31(12):1939–1947. doi: 10.1128/aac.31.12.1939

Spectrum and mode of action of azithromycin (CP-62,993), a new 15-membered-ring macrolide with improved potency against gram-negative organisms.

J Retsema 1, A Girard 1, W Schelkly 1, M Manousos 1, M Anderson 1, G Bright 1, R Borovoy 1, L Brennan 1, R Mason 1
PMCID: PMC175832  PMID: 2449865

Abstract

The macrolide antibiotic azithromycin (CP-62,993; 9-deoxo-9a-methyl-9a-aza-9a-homoerythromycin A; also designated XZ-450 [Pliva Pharmaceuticals, Zagreb, Yugoslavia]) showed a significant improvement in potency against gram-negative organisms compared with erythromycin while retaining the classic erythromycin spectrum. It was up to four times more potent than erythromycin against Haemophilus influenzae and Neisseria gonorrhoeae and twofold more potent against Branhamella catarrhalis, Campylobacter species, and Legionella species. It had activity similar to that of erythromycin against Chlamydia spp. Azithromycin was significantly more potent versus many genera of the family Enterobacteriaceae; its MIC for 90% of strains of Escherichia, Salmonella, Shigella, and Yersinia was less than or equal to 4 micrograms/ml, compared with 16 to 128 micrograms/ml for erythromycin. Azithromycin inhibited the majority of gram-positive organisms at less than or equal to 1 micrograms/ml. It displayed cross-resistance to erythromycin-resistant Staphylococcus and Streptococcus isolates. It had moderate activity against Bacteroides fragilis and was comparable to erythromycin against other anaerobic species. Azithromycin also demonstrated improved bactericidal activity in comparison with erythromycin. The mechanism of action of azithromycin was similar to that of erythromycin since azithromycin competed effectively for [14C]erythromycin ribosomebinding sites.

Full text

PDF
1939

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronoff S. C., Laurent C., Jacobs M. R. In-vitro activity of erythromycin, roxithromycin and CP 62993 against common paediatric pathogens. J Antimicrob Chemother. 1987 Feb;19(2):275–276. doi: 10.1093/jac/19.2.275. [DOI] [PubMed] [Google Scholar]
  2. Benson C. A., Segreti J., Beaudette F. E., Hines D. W., Goodman L. J., Kaplan R. L., Trenholme G. M. In vitro activity of A-56268 (TE-031), a new macrolide, compared with that of erythromycin and clindamycin against selected gram-positive and gram-negative organisms. Antimicrob Agents Chemother. 1987 Feb;31(2):328–330. doi: 10.1128/aac.31.2.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Czinn S., Carr H., Aronoff S. Susceptibility of Campylobacter pyloridis to three macrolide antibiotics (erythromycin, roxithromycin [RU 28965], and CP 62,993) and rifampin. Antimicrob Agents Chemother. 1986 Aug;30(2):328–329. doi: 10.1128/aac.30.2.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. English A. R., Retsema J. A., Girard A. E., Schelkly W., Lynch J. E. Evaluation of three 4"-deoxy-4"-sulfonamido-oleandomycin derivatives with erythromycin-like antibacterial potency. Antimicrob Agents Chemother. 1984 Jan;25(1):118–122. doi: 10.1128/aac.25.1.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fernandes P. B., Bailer R., Swanson R., Hanson C. W., McDonald E., Ramer N., Hardy D., Shipkowitz N., Bower R. R., Gade E. In vitro and in vivo evaluation of A-56268 (TE-031), a new macrolide. Antimicrob Agents Chemother. 1986 Dec;30(6):865–873. doi: 10.1128/aac.30.6.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Girard A. E., Girard D., English A. R., Gootz T. D., Cimochowski C. R., Faiella J. A., Haskell S. L., Retsema J. A. Pharmacokinetic and in vivo studies with azithromycin (CP-62,993), a new macrolide with an extended half-life and excellent tissue distribution. Antimicrob Agents Chemother. 1987 Dec;31(12):1948–1954. doi: 10.1128/aac.31.12.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jones R. N., Barry A. L., Thornsberry C. In vitro evaluation of three new macrolide antimicrobial agents, RU28965, RU29065, and RU29702, and comparisons with other orally administered drugs. Antimicrob Agents Chemother. 1983 Aug;24(2):209–215. doi: 10.1128/aac.24.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jorgensen J. H., Redding J. S., Howell A. W. In vitro activity of the new macrolide antibiotic roxithromycin (RU 28965) against clinical isolates of Haemophilus influenzae. Antimicrob Agents Chemother. 1986 May;29(5):921–922. doi: 10.1128/aac.29.5.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pestka S. Antibiotics as probes of ribosome structure: binding of chloramphenicol and erythromycin to polyribosomes; effect of other antibiotics. Antimicrob Agents Chemother. 1974 Mar;5(3):255–267. doi: 10.1128/aac.5.3.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Retsema J. A., English A. R., Girard A., Lynch J. E., Anderson M., Brennan L., Cimochowski C., Faiella J., Norcia W., Sawyer P. Sulbactam/ampicillin: in vitro spectrum, potency, and activity in models of acute infection. Rev Infect Dis. 1986 Nov-Dec;8 (Suppl 5):S528–S534. doi: 10.1093/clinids/8.supplement_5.s528. [DOI] [PubMed] [Google Scholar]
  11. Ridgway G. L. Antimicrobial chemotherapy of chlamydial infection: where next? Eur J Clin Microbiol. 1986 Oct;5(5):550–553. doi: 10.1007/BF02017703. [DOI] [PubMed] [Google Scholar]
  12. Teraoka H. Binding of erythromycin to Escherichia coli ribosomes. J Antibiot (Tokyo) 1971 May;24(5):302–309. doi: 10.7164/antibiotics.24.302. [DOI] [PubMed] [Google Scholar]
  13. Walsh M., Kappus E. W., Quinn T. C. In vitro evaluation of CP-62,993, erythromycin, clindamycin, and tetracycline against Chlamydia trachomatis. Antimicrob Agents Chemother. 1987 May;31(5):811–812. doi: 10.1128/aac.31.5.811. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES