Skip to main content
Sexually Transmitted Infections logoLink to Sexually Transmitted Infections
. 2004 Feb;80(1):68–71. doi: 10.1136/sti.2003.006239

Evaluation of real time polymerase chain reaction assays for confirmation of Neisseria gonorrhoeae in clinical samples tested positive in the Roche Cobas Amplicor assay

S Tabrizi 1, S Chen 1, M Cohenford 1, B Lentrichia 1, E Coffman 1, T Shultz 1, J Tapsall 1, S Garland 1
PMCID: PMC1758385  PMID: 14755041

Abstract

Objective: Development of a rapid, sensitive, and accurate assay for confirmation of Neisseria gonorrhoeae in clinical samples.

Method: Two real time polymerase chain reaction (PCR) assays, developed on the LightCycler for amplification of the N gonorrhoeae cppB gene, were utilised for confirmation of this bacterial pathogen in samples positive by the Roche Cobas Amplicor assay. Performance characteristics of the two assays were compared with other commercial nucleic acid amplification assays, including the Abbott LCx and Roche 16S rRNA tests.

Results: All related Neisseria as well as other bacterial species tested negative by both cppB gene based assays, whereas 120 N gonorrhoeae clinical isolates from various geographical regions gave in positive results. Both assays had a sensitivity of one copy per reaction. 122 clinical samples positive and another 50 samples negative for N gonorrhoeae by Roche Cobas Amplicor were selected from a specimen pool of more than 3000 women tested previously. Overall, 73 of 122 (59.8%) samples were confirmed as positive. The two real time assays had sensitivities of 99% and 100% and specificities of 98% and 100%, respectively. The 16S and LCx assays produced similar results to the real time assays, indicating a similar sensitivity to and specificity of both real time assays.

Conclusion: The data from this study highlight the need to confirm N gonorrhoeae positive Cobas Amplicor PCR results as an important part of the testing algorithm of all diagnostic laboratories utilising this assay.

Full Text

The Full Text of this article is available as a PDF (210.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Farrell D. J. Evaluation of AMPLICOR Neisseria gonorrhoeae PCR using cppB nested PCR and 16S rRNA PCR. J Clin Microbiol. 1999 Feb;37(2):386–390. doi: 10.1128/jcm.37.2.386-390.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gerbase A. C., Rowley J. T., Heymann D. H., Berkley S. F., Piot P. Global prevalence and incidence estimates of selected curable STDs. Sex Transm Infect. 1998 Jun;74 (Suppl 1):S12–S16. [PubMed] [Google Scholar]
  3. Hagblom P., Korch C., Jonsson A. B., Normark S. Intragenic variation by site-specific recombination in the cryptic plasmid of Neisseria gonorrhoeae. J Bacteriol. 1986 Jul;167(1):231–237. doi: 10.1128/jb.167.1.231-237.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ho B. S., Feng W. G., Wong B. K., Egglestone S. I. Polymerase chain reaction for the detection of Neisseria gonorrhoeae in clinical samples. J Clin Pathol. 1992 May;45(5):439–442. doi: 10.1136/jcp.45.5.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ison C. A., Bellinger C. M., Walker J. Homology of cryptic plasmid of Neisseria gonorrhoeae with plasmids from Neisseria meningitidis and Neisseria lactamica. J Clin Pathol. 1986 Oct;39(10):1119–1123. doi: 10.1136/jcp.39.10.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Knox Janet, Tabrizi Sepehr N., Miller Penny, Petoumenos Kathy, Law Mathew, Chen Shujun, Garland Suzanne M. Evaluation of self-collected samples in contrast to practitioner-collected samples for detection of Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis by polymerase chain reaction among women living in remote areas. Sex Transm Dis. 2002 Nov;29(11):647–654. doi: 10.1097/00007435-200211000-00006. [DOI] [PubMed] [Google Scholar]
  7. Korenromp Eline L., Sudaryo Mondastri K., de Vlas Sake J., Gray Ronald H., Sewankambo Nelson K., Serwadda David, Wawer Maria J., Habbema J. Dik F. What proportion of episodes of gonorrhoea and chlamydia becomes symptomatic? Int J STD AIDS. 2002 Feb;13(2):91–101. doi: 10.1258/0956462021924712. [DOI] [PubMed] [Google Scholar]
  8. Palmer H. M., Mallinson H., Wood R. L., Herring A. J. Evaluation of the specificities of five DNA amplification methods for the detection of Neisseria gonorrhoeae. J Clin Microbiol. 2003 Feb;41(2):835–837. doi: 10.1128/JCM.41.2.835-837.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Resnick R. M., Cornelissen M. T., Wright D. K., Eichinger G. H., Fox H. S., ter Schegget J., Manos M. M. Detection and typing of human papillomavirus in archival cervical cancer specimens by DNA amplification with consensus primers. J Natl Cancer Inst. 1990 Sep 19;82(18):1477–1484. doi: 10.1093/jnci/82.18.1477. [DOI] [PubMed] [Google Scholar]
  10. Roberts M., Piot P., Falkow S. The ecology of gonococcal plasmids. J Gen Microbiol. 1979 Oct;114(2):491–494. doi: 10.1099/00221287-114-2-491. [DOI] [PubMed] [Google Scholar]
  11. Rompalo A. M., Gaydos C. A., Shah N., Tennant M., Crotchfelt K. A., Madico G., Quinn T. C., Daniel R., Shah K. V., Gaydos J. C. Evaluation of use of a single intravaginal swab to detect multiple sexually transmitted infections in active-duty military women. Clin Infect Dis. 2001 Sep 24;33(9):1455–1461. doi: 10.1086/322588. [DOI] [PubMed] [Google Scholar]
  12. Schachter J. Urine as a specimen for diagnosis of sexually transmitted diseases. Am J Med. 1983 Jul 28;75(1B):93–97. doi: 10.1016/0002-9343(83)90078-5. [DOI] [PubMed] [Google Scholar]
  13. Tabrizi S. N., Fairley C. K., Cehn S., Giouzeppos O., Paterson B., Bowden F. J., Garland S. M. Evaluation of patient-administered tampon specimens for Chlamydia trachomatis and Neisseria gonorrhoeae. Sex Transm Dis. 2000 Mar;27(3):133–137. doi: 10.1097/00007435-200003000-00002. [DOI] [PubMed] [Google Scholar]
  14. Tabrizi S. N., Paterson B. A., Fairley C. K., Bowden F. J., Garland S. M. Comparison of tampon and urine as self-administered methods of specimen collection in the detection of Chlamydia trachomatis, Neisseria gonorrhoeae and Trichomonas vaginalis in women. Int J STD AIDS. 1998 Jun;9(6):347–349. doi: 10.1258/0956462981922386. [DOI] [PubMed] [Google Scholar]
  15. Tabrizi S. N., Paterson B., Fairley C. K., Bowden F. J., Garland S. M. A self-administered technique for the detection of sexually transmitted diseases in remote communities. J Infect Dis. 1997 Jul;176(1):289–292. doi: 10.1086/517269. [DOI] [PubMed] [Google Scholar]
  16. Van Der Pol B., Martin D. H., Schachter J., Quinn T. C., Gaydos C. A., Jones R. B., Crotchfelt K., Moncada J., Jungkind D., Turner B. Enhancing the specificity of the COBAS AMPLICOR CT/NG test for Neisseria gonorrhoeae by retesting specimens with equivocal results. J Clin Microbiol. 2001 Sep;39(9):3092–3098. doi: 10.1128/JCM.39.9.3092-3098.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. van Doornum G. J., Schouls L. M., Pijl A., Cairo I., Buimer M., Bruisten S. Comparison between the LCx Probe system and the COBAS AMPLICOR system for detection of Chlamydia trachomatis and Neisseria gonorrhoeae infections in patients attending a clinic for treatment of sexually transmitted diseases in Amsterdam, The Netherlands. J Clin Microbiol. 2001 Mar;39(3):829–835. doi: 10.1128/JCM.39.3.829-835.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Sexually Transmitted Infections are provided here courtesy of BMJ Publishing Group

RESOURCES