Abstract
BACKGROUND: Inhaled frusemide inhibits airway narrowing and causes a transient increase in forced expiratory volume in one second (FEV1) during hypertonic saline challenge. This inhibitory effect could be secondary to prostaglandin release during challenge. The involvement of prostaglandins in the inhibitory action of frusemide during challenge with 4.5% NaCl was investigated by premedicating with indomethacin, a prostaglandin synthetase inhibitor. METHODS: Fourteen asthmatic subjects (eight women) aged 26.6 (range 18-56) years participated in a double blind, placebo controlled, crossover study. The subjects attended five times and inhaled 4.5% NaCl for 0.5, 0.75, 1, 1.5, 2, 4, 8, 8, and 8 minutes, or part thereof, or until a provocative dose causing a 20% fall in FEV1 (PD20 FEV1) was recorded. Indomethacin (100 mg/day) or placebo were taken three days before all visits, except control day. The FEV1 was measured and frusemide (38.0 (6.4) mg, pH = 9) or vehicle (0.9% NaCl, pH = 9) were inhaled 10 minutes before the challenge. Bronchodilation was calculated as the percentage rise in FEV1 from the prechallenge FEV1 to the highest FEV1 recorded during the challenge. RESULTS: Frusemide caused a fold increase in PD20 FEV1 compared with the vehicle which was similar in the presence of both indomethacin and placebo (3.7 (95% CI 2.0 to 7.3) versus 3.3 (2.0 to 5.4)). Frusemide, but not vehicle, also caused a transient percentage rise in FEV1 during challenge with 4.5% NaCl which was not blocked by indomethacin (3.6% (1.2 to 6.0)) or placebo (3.1% (1.0 to 5.2)). CONCLUSIONS: Inhaled frusemide inhibited airway narrowing and caused a transient increase in FEV1 during challenge with 4.5% NaCl. These effects were not blocked by indomethacin, which suggests that the inhibitory action of frusemide is not secondary to prostaglandin release.
Full Text
The Full Text of this article is available as a PDF (151.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson S. D., He W., Temple D. M. Inhibition by furosemide of inflammatory mediators from lung fragments. N Engl J Med. 1991 Jan 10;324(2):131–131. doi: 10.1056/NEJM199101103240218. [DOI] [PubMed] [Google Scholar]
- Barnes P. J. Diuretics and asthma. Thorax. 1993 Mar;48(3):195–196. doi: 10.1136/thx.48.3.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Belvisi M. G., Stretton C. D., Yacoub M., Barnes P. J. Nitric oxide is the endogenous neurotransmitter of bronchodilator nerves in humans. Eur J Pharmacol. 1992 Jan 14;210(2):221–222. doi: 10.1016/0014-2999(92)90676-u. [DOI] [PubMed] [Google Scholar]
- Churchill L., Chilton F. H., Resau J. H., Bascom R., Hubbard W. C., Proud D. Cyclooxygenase metabolism of endogenous arachidonic acid by cultured human tracheal epithelial cells. Am Rev Respir Dis. 1989 Aug;140(2):449–459. doi: 10.1164/ajrccm/140.2.449. [DOI] [PubMed] [Google Scholar]
- Ebeid A. M., Soeters P. B., Murray P., Fischer J. E. Release of vasoactive intestinal peptide (VIP) by intraluminal osmotic stimuli. J Surg Res. 1977 Jul;23(1):25–30. doi: 10.1016/0022-4804(77)90185-8. [DOI] [PubMed] [Google Scholar]
- Friedman M., Walker S. Assessment of lung function using an air-flow meter. Lancet. 1975 Feb 8;1(7902):310–311. doi: 10.1016/s0140-6736(75)91212-x. [DOI] [PubMed] [Google Scholar]
- Grubbe R. E., Hopp R., Dave N. K., Brennan B., Bewtra A., Townley R. Effect of inhaled furosemide on the bronchial response to methacholine and cold-air hyperventilation challenges. J Allergy Clin Immunol. 1990 May;85(5):881–884. doi: 10.1016/0091-6749(90)90072-c. [DOI] [PubMed] [Google Scholar]
- Higgs G. A., Vane J. R. Inhibition of cyclo-oxygenase and lipoxygenase. Br Med Bull. 1983 Jul;39(3):265–270. doi: 10.1093/oxfordjournals.bmb.a071831. [DOI] [PubMed] [Google Scholar]
- Jongejan R. C., de Jongste J. C., Raatgeep R. C., Stijnen T., Bonta I. L., Kerrebijn K. F. Effects of hyperosmolarity on human isolated central airways. Br J Pharmacol. 1991 Apr;102(4):931–937. doi: 10.1111/j.1476-5381.1991.tb12279.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karpel J. P., Dworkin F., Hager D., Feliciano S., Shapiro D., Posner L., Luks D. Inhaled furosemide is not effective in acute asthma. Chest. 1994 Nov;106(5):1396–1400. doi: 10.1378/chest.106.5.1396. [DOI] [PubMed] [Google Scholar]
- Knight D. A., Stewart G. A., Thompson P. J. Histamine tachyphylaxis in human airway smooth muscle. The role of H2-receptors and the bronchial epithelium. Am Rev Respir Dis. 1992 Jul;146(1):137–140. doi: 10.1164/ajrccm/146.1.137. [DOI] [PubMed] [Google Scholar]
- Lundberg J. M., Martling C. R., Saria A. Substance P and capsaicin-induced contraction of human bronchi. Acta Physiol Scand. 1983 Sep;119(1):49–53. doi: 10.1111/j.1748-1716.1983.tb07304.x. [DOI] [PubMed] [Google Scholar]
- Miyanoshita A., Terada M., Endou H. Furosemide directly stimulates prostaglandin E2 production in the thick ascending limb of Henle's loop. J Pharmacol Exp Ther. 1989 Dec;251(3):1155–1159. [PubMed] [Google Scholar]
- Mullol J., Ramis I., Prat J., Roselló-Catafau J., Xaubet A., Piera C., Gelpí E., Picado C. Failure of frusemide to increase production of prostaglandin E2 in human nasal mucosa in vivo. Thorax. 1993 Mar;48(3):260–263. doi: 10.1136/thx.48.3.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Connor B. J., Barnes P. J., Chung K. F. Inhibition of sodium metabisulphite induced bronchoconstriction by frusemide in asthma: role of cyclooxygenase products. Thorax. 1994 Apr;49(4):307–311. doi: 10.1136/thx.49.4.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Donnell W. J., Rosenberg M., Niven R. W., Drazen J. M., Israel E. Acetazolamide and furosemide attenuate asthma induced by hyperventilation of cold, dry air. Am Rev Respir Dis. 1992 Dec;146(6):1518–1523. doi: 10.1164/ajrccm/146.6.1518. [DOI] [PubMed] [Google Scholar]
- Palmer J. B., Cuss F. M., Barnes P. J. VIP and PHM and their role in nonadrenergic inhibitory responses in isolated human airways. J Appl Physiol (1985) 1986 Oct;61(4):1322–1328. doi: 10.1152/jappl.1986.61.4.1322. [DOI] [PubMed] [Google Scholar]
- Pavord I. D., Tattersfield A. E. Bronchoprotective role for endogenous prostaglandin E2. Lancet. 1995 Feb 18;345(8947):436–438. doi: 10.1016/s0140-6736(95)90409-3. [DOI] [PubMed] [Google Scholar]
- Pavord I. D., Wisniewski A., Tattersfield A. E. Inhaled frusemide and exercise induced asthma: evidence of a role for inhibitory prostanoids. Thorax. 1992 Oct;47(10):797–800. doi: 10.1136/thx.47.10.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodwell L. T., Anderson S. D., du Toit J. I., Seale J. P. The effect of inhaled frusemide on airway sensitivity to inhaled 4.5% sodium chloride aerosol in asthmatic subjects. Thorax. 1993 Mar;48(3):208–213. doi: 10.1136/thx.48.3.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scherer B., Weber P. C. Time-dependent changes in prostaglandin excretion in response to frusemide in man. Clin Sci (Lond) 1979 Jan;56(1):77–81. doi: 10.1042/cs0560077. [DOI] [PubMed] [Google Scholar]
- Thorngren M., Vinge E. Thromboxane A2 and prostacyclin release in bleeding time blood during primary haemostasis in healthy individuals. Acta Med Scand. 1988;223(2):187–190. doi: 10.1111/j.0954-6820.1988.tb15785.x. [DOI] [PubMed] [Google Scholar]
- Verleden G. M., Pype J. L., Deneffe G., Demedts M. G. Effect of loop diuretics on cholinergic neurotransmission in human airways in vitro. Thorax. 1994 Jul;49(7):657–663. doi: 10.1136/thx.49.7.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walters E. H., Bevan C., Parrish R. W., Davies B. H., Smith A. P. Time-dependent effect of prostaglandin E2 inhalation on airway responses to bronchoconstrictor agents in normal subjects. Thorax. 1982 Jun;37(6):438–442. doi: 10.1136/thx.37.6.438. [DOI] [PMC free article] [PubMed] [Google Scholar]