Skip to main content
Thorax logoLink to Thorax
. 1997 Feb;52(2):120–124. doi: 10.1136/thx.52.2.120

Inhaled nitric oxide and arterial oxygen tension in patients with chronic obstructive pulmonary disease and severe pulmonary hypertension

Y Katayama, T W Higenbottam, d Diaz, G Cremona, S Akamine, J A Barbera, R Rodriguez-Roisin
PMCID: PMC1758488  PMID: 9059470

Abstract

BACKGROUND: Inhaled nitric oxide (NO) is a selective pulmonary vasodilator which can improve gas exchange in acute lung injury. However, it is uncertain that this effect on arterial oxygenation can be generalised to all lung diseases. METHODS: The effects of inhaled NO on gas exchange were studied in nine patients with chronic obstructive pulmonary disease (COPD), 11 patients with severe pulmonary hypertension, and 14 healthy volunteers. A randomized sequence of 40 ppm of NO or air was inhaled for 20 minutes through an orofacial mask. RESULTS: Inhaled NO reduced mean (SE) transcutaneous arterial oxygen tension (TcPO2) from 9.6 (0.3) to 8.9 (0.4) kPa in healthy volunteers and from 7.4 (0.6) to 7.0 (0.5) kPa in patients with COPD. There was no change in TcPO2 in patients with severe pulmonary hypertension. During inhalation of NO and air no change occurred in transcutaneous arterial carbon dioxide tension (TcPCO2), arterial oxygen saturation (SaO2) measured by pulse oximeter, or cardiac output determined by the transthoracic impedance method. CONCLUSIONS: Inhaled NO does not improve TcPO2 nor increase cardiac output in normal subjects and patients with COPD, suggesting that inhaled NO worsens gas exchange. This could represent inhaled NO overriding hypoxic pulmonary vasoconstriction in COPD. The finding that TcPO2 also fell when normal subjects inhaled NO suggests that a similar mechanism normally contributes to optimal gas exchange. Whilst inhaled NO can improve oxygenation, this effect should not be considered to be a general response but is dependent on the type of lung disease. 




Full Text

The Full Text of this article is available as a PDF (138.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adnot S., Kouyoumdjian C., Defouilloy C., Andrivet P., Sediame S., Herigault R., Fratacci M. D. Hemodynamic and gas exchange responses to infusion of acetylcholine and inhalation of nitric oxide in patients with chronic obstructive lung disease and pulmonary hypertension. Am Rev Respir Dis. 1993 Aug;148(2):310–316. doi: 10.1164/ajrccm/148.2.310. [DOI] [PubMed] [Google Scholar]
  2. Agustí A. G., Barberà J. A. Contribution of multiple inert gas elimination technique to pulmonary medicine. 2. Chronic pulmonary diseases: chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Thorax. 1994 Sep;49(9):924–932. doi: 10.1136/thx.49.9.924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ahluwalia J. S., Kelsall A. W., Raine J., Rennie J. M., Mahmood M., Oduro A., Latimer R., Pickett J., Higenbottam T. W. Safety of inhaled nitric oxide in premature neonates. Acta Paediatr. 1994 Mar;83(3):347–348. doi: 10.1111/j.1651-2227.1994.tb18115.x. [DOI] [PubMed] [Google Scholar]
  4. Channick R. N., Hoch R. C., Newhart J. W., Johnson F. W., Smith C. M. Improvement in pulmonary hypertension and hypoxemia during nitric oxide inhalation in a patient with end-stage pulmonary fibrosis. Am J Respir Crit Care Med. 1994 Mar;149(3 Pt 1):811–814. doi: 10.1164/ajrccm.149.3.8118653. [DOI] [PubMed] [Google Scholar]
  5. Cremona G., Wood A. M., Hall L. W., Bower E. A., Higenbottam T. Effect of inhibitors of nitric oxide release and action on vascular tone in isolated lungs of pig, sheep, dog and man. J Physiol. 1994 Nov 15;481(Pt 1):185–195. doi: 10.1113/jphysiol.1994.sp020429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Frostell C., Fratacci M. D., Wain J. C., Jones R., Zapol W. M. Inhaled nitric oxide. A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation. 1991 Jun;83(6):2038–2047. doi: 10.1161/01.cir.83.6.2038. [DOI] [PubMed] [Google Scholar]
  7. Huch A., Huch R., Lübbers D. W. Quantitative polarographische Sauerstoffdruckmessung auf der Kopfhaut des Neugeborenen. Arch Gynakol. 1969;207(3):443–451. doi: 10.1007/BF00667211. [DOI] [PubMed] [Google Scholar]
  8. Ignarro L. J. Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ Res. 1989 Jul;65(1):1–21. doi: 10.1161/01.res.65.1.1. [DOI] [PubMed] [Google Scholar]
  9. Ignarro L. J., Buga G. M., Wood K. S., Byrns R. E., Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9265–9269. doi: 10.1073/pnas.84.24.9265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kinsella J. P., Neish S. R., Shaffer E., Abman S. H. Low-dose inhalation nitric oxide in persistent pulmonary hypertension of the newborn. Lancet. 1992 Oct 3;340(8823):819–820. doi: 10.1016/0140-6736(92)92687-b. [DOI] [PubMed] [Google Scholar]
  11. Moinard J., Manier G., Pillet O., Castaing Y. Effect of inhaled nitric oxide on hemodynamics and VA/Q inequalities in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1994 Jun;149(6):1482–1487. doi: 10.1164/ajrccm.149.6.8004302. [DOI] [PubMed] [Google Scholar]
  12. Morrell N. W., Wignall B. K., Biggs T., Seed W. A. Collateral ventilation and gas exchange in emphysema. Am J Respir Crit Care Med. 1994 Sep;150(3):635–641. doi: 10.1164/ajrccm.150.3.8087331. [DOI] [PubMed] [Google Scholar]
  13. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  14. Pepke-Zaba J., Higenbottam T. W., Dinh Xuan A. T., Scott J. P., English T. A., Wallwork J. Validation of impedance cardiography measurements of cardiac output during limited exercise in heart transplant recipients. Transpl Int. 1990 Jul;3(2):108–112. doi: 10.1007/BF00336214. [DOI] [PubMed] [Google Scholar]
  15. Pepke-Zaba J., Higenbottam T. W., Dinh-Xuan A. T., Stone D., Wallwork J. Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. Lancet. 1991 Nov 9;338(8776):1173–1174. doi: 10.1016/0140-6736(91)92033-x. [DOI] [PubMed] [Google Scholar]
  16. Puybasset L., Rouby J. J., Mourgeon E., Stewart T. E., Cluzel P., Arthaud M., Poète P., Bodin L., Korinek A. M., Viars P. Inhaled nitric oxide in acute respiratory failure: dose-response curves. Intensive Care Med. 1994 May;20(5):319–327. doi: 10.1007/BF01720903. [DOI] [PubMed] [Google Scholar]
  17. Walmrath D., Schneider T., Pilch J., Grimminger F., Seeger W. Aerosolised prostacyclin in adult respiratory distress syndrome. Lancet. 1993 Oct 16;342(8877):961–962. doi: 10.1016/0140-6736(93)92004-d. [DOI] [PubMed] [Google Scholar]
  18. Warren J. B., Maltby N. H., MacCormack D., Barnes P. J. Pulmonary endothelium-derived relaxing factor is impaired in hypoxia. Clin Sci (Lond) 1989 Dec;77(6):671–676. doi: 10.1042/cs0770671. [DOI] [PubMed] [Google Scholar]
  19. Wennmalm A., Benthin G., Petersson A. S. Dependence of the metabolism of nitric oxide (NO) in healthy human whole blood on the oxygenation of its red cell haemoglobin. Br J Pharmacol. 1992 Jul;106(3):507–508. doi: 10.1111/j.1476-5381.1992.tb14365.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES