Skip to main content
Thorax logoLink to Thorax
. 1997 Apr;52(4):355–361. doi: 10.1136/thx.52.4.355

Abdominal muscle recruitment and PEEPi during bronchoconstriction in chronic obstructive pulmonary disease

M Gorini, G Misuri, R Duranti, I Iandelli, M Mancini, G Scano
PMCID: PMC1758533  PMID: 9196519

Abstract

BACKGROUND: It has been recently shown that, when breathing at rest, many patients with severe chronic obstructive pulmonary disease (COPD) contract abdominal muscles during expiration, and that this contraction is an important determinant of positive end expiratory alveolar pressure (PEEPi). In this study the effects of acute bronchoconstriction on abdominal muscle recruitment in patients with severe COPD were studied, together with the consequence of abdominal muscle action on chest wall mechanics. METHODS: Breathing pattern, pleural (PPL) and gastric (PGA) pressures, and changes in abdomen anteroposterior (AP) diameter were studied in 14 patients with COPD (mean forced expiratory volume in one second (FEV1) 1.06 (0.08) 1) under control conditions and during histamine-induced bronchoconstriction. RESULTS: The analysis of plots of PGA versus the AP diameter of the abdomen revealed that during maximal broncho- constriction (decrease in FEV1 of 34.8% (95% confidence intervals (CI) 29.9 to 39.7)) the expiratory rise in PGA increased significantly whereas end expiratory abdomen AP diameter decreased, indicating marked abdominal muscle recruitment. As a consequence, the rib cage compartment accounted for all of the volume of hyperinflation during bronchoconstriction (mean value 0.66 I, 95% CI 0.49 to 0.83). Positive end expiratory alveolar pressure during progressive bronchoconstriction was related directly to the expiratory rise in PGA and inversely to the expiratory time. CONCLUSIONS: The results indicate that, in patients with severe COPD, the abdominal muscles are recruited during acute bronchoconstriction. This recruitment probably preserves diaphragm length at the beginning of inspiratory muscle contraction despite the hyperinflation, and contributes significantly to positive end expiratory alveolar pressure. The degree of dynamic pulmonary hyperinflation during bronchoconstriction can be overestimated if abdominal muscle contraction is not assessed. 




Full Text

The Full Text of this article is available as a PDF (164.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AGOSTONI E., RAHN H. Abdominal and thoracic pressures at different lung volumes. J Appl Physiol. 1960 Nov;15:1087–1092. doi: 10.1152/jappl.1960.15.6.1087. [DOI] [PubMed] [Google Scholar]
  2. Appendini L., Patessio A., Zanaboni S., Carone M., Gukov B., Donner C. F., Rossi A. Physiologic effects of positive end-expiratory pressure and mask pressure support during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1994 May;149(5):1069–1076. doi: 10.1164/ajrccm.149.5.8173743. [DOI] [PubMed] [Google Scholar]
  3. Burrows B., Kellogg A. L., Buskey J. Relationship of symptoms of chronic bronchitis and emphysema to weather and air pollution. Arch Environ Health. 1968 Mar;16(3):406–413. doi: 10.1080/00039896.1968.10665079. [DOI] [PubMed] [Google Scholar]
  4. Dal Vecchio L., Polese G., Poggi R., Rossi A. "Intrinsic" positive end-expiratory pressure in stable patients with chronic obstructive pulmonary disease. Eur Respir J. 1990 Jan;3(1):74–80. [PubMed] [Google Scholar]
  5. De Troyer A., Estenne M., Ninane V., Van Gansbeke D., Gorini M. Transversus abdominis muscle function in humans. J Appl Physiol (1985) 1990 Mar;68(3):1010–1016. doi: 10.1152/jappl.1990.68.3.1010. [DOI] [PubMed] [Google Scholar]
  6. De Troyer A., Kelly S., Macklem P. T., Zin W. A. Mechanics of intercostal space and actions of external and internal intercostal muscles. J Clin Invest. 1985 Mar;75(3):850–857. doi: 10.1172/JCI111782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Derenne J. P., Fleury B., Pariente R. Acute respiratory failure of chronic obstructive pulmonary disease. Am Rev Respir Dis. 1988 Oct;138(4):1006–1033. doi: 10.1164/ajrccm/138.4.1006. [DOI] [PubMed] [Google Scholar]
  8. Goldman M. D., Grimby G., Mead J. Mechanical work of breathing derived from rib cage and abdominal V-P partitioning. J Appl Physiol. 1976 Nov;41(5 Pt 1):752–763. doi: 10.1152/jappl.1976.41.5.752. [DOI] [PubMed] [Google Scholar]
  9. Gorini M., Misuri G., Corrado A., Duranti R., Iandelli I., De Paola E., Scano G. Breathing pattern and carbon dioxide retention in severe chronic obstructive pulmonary disease. Thorax. 1996 Jul;51(7):677–683. doi: 10.1136/thx.51.7.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grimby G., Goldman M., Mead J. Respiratory muscle action inferred from rib cage and abdominal V-P partitioning. J Appl Physiol. 1976 Nov;41(5 Pt 1):739–751. doi: 10.1152/jappl.1976.41.5.739. [DOI] [PubMed] [Google Scholar]
  11. Haluszka J., Chartrand D. A., Grassino A. E., Milic-Emili J. Intrinsic PEEP and arterial PCO2 in stable patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1990 May;141(5 Pt 1):1194–1197. doi: 10.1164/ajrccm/141.5_Pt_1.1194. [DOI] [PubMed] [Google Scholar]
  12. Jiang T. X., Deschepper K., Demedts M., Decramer M. Effects of acute hyperinflation on the mechanical effectiveness of the parasternal intercostals. Am Rev Respir Dis. 1989 Feb;139(2):522–528. doi: 10.1164/ajrccm/139.2.522. [DOI] [PubMed] [Google Scholar]
  13. Kirby J. G., Juniper E. F., Hargreave F. E., Zamel N. Total lung capacity does not change during methacholine-stimulated airway narrowing. J Appl Physiol (1985) 1986 Dec;61(6):2144–2147. doi: 10.1152/jappl.1986.61.6.2144. [DOI] [PubMed] [Google Scholar]
  14. Martin J. G., Shore S. A., Engel L. A. Mechanical load and inspiratory muscle action during induced asthma. Am Rev Respir Dis. 1983 Sep;128(3):455–460. doi: 10.1164/arrd.1983.128.3.455. [DOI] [PubMed] [Google Scholar]
  15. Martinez F. J., Couser J. I., Celli B. R. Factors influencing ventilatory muscle recruitment in patients with chronic airflow obstruction. Am Rev Respir Dis. 1990 Aug;142(2):276–282. doi: 10.1164/ajrccm/142.2.276. [DOI] [PubMed] [Google Scholar]
  16. Ninane V., Gorini M. Adverse effect of hyperinflation on parasternal intercostals. J Appl Physiol (1985) 1994 Nov;77(5):2201–2206. doi: 10.1152/jappl.1994.77.5.2201. [DOI] [PubMed] [Google Scholar]
  17. Ninane V., Rypens F., Yernault J. C., De Troyer A. Abdominal muscle use during breathing in patients with chronic airflow obstruction. Am Rev Respir Dis. 1992 Jul;146(1):16–21. doi: 10.1164/ajrccm/146.1.16. [DOI] [PubMed] [Google Scholar]
  18. Ninane V., Yernault J. C., de Troyer A. Intrinsic PEEP in patients with chronic obstructive pulmonary disease. Role of expiratory muscles. Am Rev Respir Dis. 1993 Oct;148(4 Pt 1):1037–1042. doi: 10.1164/ajrccm/148.4_Pt_1.1037. [DOI] [PubMed] [Google Scholar]
  19. Oliven A., Deal E. C., Jr, Kelsen S. G., Cherniack N. S. Effects of bronchoconstriction on respiratory muscle activity during expiration. J Appl Physiol (1985) 1987 Jan;62(1):308–314. doi: 10.1152/jappl.1987.62.1.308. [DOI] [PubMed] [Google Scholar]
  20. Vidruk E. H., Hahn H. L., Nadel J. A., Sampson S. R. Mechanisms by which histamine stimulates rapidly adapting receptors in dog lungs. J Appl Physiol Respir Environ Exerc Physiol. 1977 Sep;43(3):397–402. doi: 10.1152/jappl.1977.43.3.397. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES