Abstract
BACKGROUND: Renal functional reserve is the normal increase in renal blood flow after a protein load, and reduced or absent renal functional reserve is an early index of renal impairment. Renal blood flow is frequently reduced during acute oedematous exacerbations of chronic obstructive pulmonary disease (COPD). It is possible that patients with severe COPD in the stable state may have a reduced or absent renal functional reserve which could be a factor in oedema formation. METHODS: Sixteen stable patients with severe COPD and five normal controls were studied. The mean (SD) arterial oxygen and carbon dioxide tensions (PaO2, PaCO2) and forced expiratory volume in one second (FEV1) of patients with COPD were 8.1 (1.04) kPa, 6.3 (0.69) kPa, and 0.74 (0.27) 1, respectively. The pulsatility index (PI), an index of renovascular resistance, was measured non-invasively by Doppler ultrasonography at baseline and at intervals after a protein load of 250 g steak. RESULTS: The PI fell after the protein load in the normal subjects from 1.04 (0.19) to 0.84 (0.17), mean difference 0.20, 95% confidence interval of difference (CI) 0.14 to 0.27, p < 0.001. In the COPD group there was no change; baseline PI = 1.04 (0.16), PI after protein load = 1.08 (0.19), mean difference = -0.04, 95% CI-0.11 to 0.04, p = NS. Six of the patients with COPD were normocapnic and 10 were hypercapnic (PaCO2 > or = 6.0 kPa). The normocapnic patients had no significant change in PI (baseline PI = 1.07 (0.15), PI after protein load = 1.01 (0.16), mean difference = 0.06, 95% CI -0.03 to 0.15) while in the hypercapnic patients the PI tended to rise (baseline PI = 1.03 (0.17), PI after protein load = 1.12 (0.21), mean difference = -0.09, 95% CI 0.18 to 0.007, p = 0.06). CONCLUSIONS: Renal haemodynamics were unchanged after a protein load in patients with severe COPD, suggesting that they had no renal functional reserve. This may be a factor in the development of oedema frequently seen in patients with severe COPD, particularly in hypercapnic patients.
Full Text
The Full Text of this article is available as a PDF (119.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amiel C., Blanchet F., Friedlander G., Nitenberg A. Renal functional reserve. Nephrol Dial Transplant. 1990;5(9):763–770. doi: 10.1093/ndt/5.9.763. [DOI] [PubMed] [Google Scholar]
- Anand I. S., Chandrashekhar Y., Ferrari R., Sarma R., Guleria R., Jindal S. K., Wahi P. L., Poole-Wilson P. A., Harris P. Pathogenesis of congestive state in chronic obstructive pulmonary disease. Studies of body water and sodium, renal function, hemodynamics, and plasma hormones during edema and after recovery. Circulation. 1992 Jul;86(1):12–21. doi: 10.1161/01.cir.86.1.12. [DOI] [PubMed] [Google Scholar]
- Avasthi P. S., Greene E. R., Voyles W. F. Noninvasive Doppler assessment of human postprandial renal blood flow and cardiac output. Am J Physiol. 1987 Jun;252(6 Pt 2):F1167–F1174. doi: 10.1152/ajprenal.1987.252.6.F1167. [DOI] [PubMed] [Google Scholar]
- Bland J. M., Altman D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986 Feb 8;1(8476):307–310. [PubMed] [Google Scholar]
- Brenner B. M., Meyer T. W., Hostetter T. H. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med. 1982 Sep 9;307(11):652–659. doi: 10.1056/NEJM198209093071104. [DOI] [PubMed] [Google Scholar]
- CAMPBELL E. J., SHORT D. S. The cause of oedema in "corpulmonale". Lancet. 1960 May 28;1(7135):1184–1186. doi: 10.1016/s0140-6736(60)91062-x. [DOI] [PubMed] [Google Scholar]
- Chabot F., Mertes P. M., Delorme N., Schrijen F. V., Saunier C. G., Polu J. M. Effect of acute hypercapnia on alpha atrial natriuretic peptide, renin, angiotensin II, aldosterone, and vasopressin plasma levels in patients with COPD. Chest. 1995 Mar;107(3):780–786. doi: 10.1378/chest.107.3.780. [DOI] [PubMed] [Google Scholar]
- FISHMAN A. P., MAXWELL M. H., CROWDER C. H., MORALES P. Kidney function in cor pulmonale; particular consideration of changes in renal hemodynamics and sodium excretion during variation in level of oxygenation. Circulation. 1951 May;3(5):703–721. doi: 10.1161/01.cir.3.5.703. [DOI] [PubMed] [Google Scholar]
- Farber M. O., Roberts L. R., Weinberger M. H., Robertson G. L., Fineberg N. S., Manfredi F. Abnormalities of sodium and H2O handling in chronic obstructive lung disease. Arch Intern Med. 1982 Jul;142(7):1326–1330. [PubMed] [Google Scholar]
- Graf H., Stummvoll H. K., Luger A., Prager R. Effect of amino acid infusion on glomerular filtration rate. N Engl J Med. 1983 Jan 20;308(3):159–160. doi: 10.1056/NEJM198301203080318. [DOI] [PubMed] [Google Scholar]
- Hodgkin J. E. Prognosis in chronic obstructive pulmonary disease. Clin Chest Med. 1990 Sep;11(3):555–569. [PubMed] [Google Scholar]
- Hostetter T. H. Human renal response to meat meal. Am J Physiol. 1986 Apr;250(4 Pt 2):F613–F618. doi: 10.1152/ajprenal.1986.250.4.F613. [DOI] [PubMed] [Google Scholar]
- Howes T. Q., Deane C. R., Levin G. E., Baudouin S. V., Moxham J. The effects of oxygen and dopamine on renal and aortic blood flow in chronic obstructive pulmonary disease with hypoxemia and hypercapnia. Am J Respir Crit Care Med. 1995 Feb;151(2 Pt 1):378–383. doi: 10.1164/ajrccm.151.2.7842195. [DOI] [PubMed] [Google Scholar]
- Kilburn K. H., Dowell A. R. Renal function in respiratory failure. Effects of hypoxia, hyperoxia, and hypercapnia. Arch Intern Med. 1971 Apr;127(4):754–762. [PubMed] [Google Scholar]
- MacNee W. Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part two. Am J Respir Crit Care Med. 1994 Oct;150(4):1158–1168. doi: 10.1164/ajrccm.150.4.7921453. [DOI] [PubMed] [Google Scholar]
- Memoli B., Libetta C., Sabbatini M., Conte G., Russo D., Giani U., Capone D., Andreucci V. E. Renal functional reserve: its significance in normal and salt depletion conditions. Kidney Int. 1991 Dec;40(6):1134–1140. doi: 10.1038/ki.1991.325. [DOI] [PubMed] [Google Scholar]
- Oliver R. M., Peacock A. J., Fleming J. S., Waller D. G. Renal and pulmonary effects of angiotensin converting enzyme inhibition in chronic hypoxic lung disease. Thorax. 1989 Jun;44(6):513–515. doi: 10.1136/thx.44.6.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PLATTS M. M., HAMMOND J. D., STUART-HARRIS C. H. A study of cor pulmonale in patients with chronic bronchitis. Q J Med. 1960 Oct;29:559–574. [PubMed] [Google Scholar]
- Stevens P. E., Bolsin S., Gwyther S. J., Hanson M. E., Boultbee J. E., Kox W. Practical use of duplex Doppler analysis of the renal vasculature in critically ill patients. Lancet. 1989 Feb 4;1(8632):240–242. doi: 10.1016/s0140-6736(89)91257-9. [DOI] [PubMed] [Google Scholar]
- Woods L. L. Mechanisms of renal hemodynamic regulation in response to protein feeding. Kidney Int. 1993 Oct;44(4):659–675. doi: 10.1038/ki.1993.299. [DOI] [PubMed] [Google Scholar]
- Yura T., Takamitsu Y., Yuasa S., Miki S., Takahashi N., Bandai H., Sumikura T., Uchida K., Tamai T., Matsuo H. Total and split renal function assessed by ultrasound Doppler techniques. Nephron. 1991;58(1):37–41. doi: 10.1159/000186375. [DOI] [PubMed] [Google Scholar]
- ter Wee P. M., Geerlings W., Rosman J. B., Sluiter W. J., van der Geest S., Donker A. J. Testing renal reserve filtration capacity with an amino acid solution. Nephron. 1985;41(2):193–199. doi: 10.1159/000183580. [DOI] [PubMed] [Google Scholar]