Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1988 Sep;32(9):1323–1326. doi: 10.1128/aac.32.9.1323

Effects of antimicrobial agents on growth and chemotaxis of Trichomonas vaginalis.

B Sugarman 1, N Mummaw 1
PMCID: PMC175860  PMID: 3264130

Abstract

The motility of viable Trichomonas vaginalis organisms is readily demonstrable in a clinical wet mount or cultured specimens. We attempted to determine whether migration is a dynamic process such that the organisms move to avoid exposure to toxic antimicrobial agents. With the use of axenic cultures of T. vaginalis that were radiolabeled and assayed for chemotaxis in plastic multiwelled plates with a membrane filter inserted to trap organisms, the response of clinical isolates to various antimicrobial agents was studied. Chemotaxis was readily demonstrable and dependent upon factors including time of incubation, media used, and viscosity of media. Nitroimidazoles (e.g., metronidazole) which readily inhibited the growth of these organisms also caused significant chemorepulsion after minutes of exposure. The antifungal imidazoles ketoconazole and miconazole inhibited growth nearly as readily and caused chemorepulsion, but to a lesser degree. The spermicide Nonoxynol-9 also inhibited growth and caused significant chemorepulsion. The minimal concentrations of many compounds which inhibited growth were very similar to those which caused significant chemorepulsion. Imidazole and antibiotics (e.g., penicillin) which did not inhibit growth did not induce any chemotactic effects. Chemotaxis of T. vaginalis is an active and dynamic process, and the organisms display chemorepulsion shortly after exposure to toxic antimicrobial agents, well before toxicity can be demonstrated.

Full text

PDF
1323

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alderete J. F., Garza G. E. Specific nature of Trichomonas vaginalis parasitism of host cell surfaces. Infect Immun. 1985 Dec;50(3):701–708. doi: 10.1128/iai.50.3.701-708.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benes S., McCormack W. M. Inhibition of growth of Chlamydia trachomatis by nonoxynol-9 in vitro. Antimicrob Agents Chemother. 1985 May;27(5):724–726. doi: 10.1128/aac.27.5.724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Freter R., O'Brien P. C., Macsai M. S. Effect of chemotaxis on the interaction of cholera vibrios with intestinal mucosa. Am J Clin Nutr. 1979 Jan;32(1):128–132. doi: 10.1093/ajcn/32.1.128. [DOI] [PubMed] [Google Scholar]
  4. Hager W. D., Brown S. T., Kraus S. J., Kleris G. S., Perkins G. J., Henderson M. Metronidazole for vaginal trichomoniasis. Seven-day vs single-dose regimens. JAMA. 1980 Sep 12;244(11):1219–1220. [PubMed] [Google Scholar]
  5. Lindmark D. G., Müller M. Antitrichomonad action, mutagenicity, and reduction of metronidazole and other nitroimidazoles. Antimicrob Agents Chemother. 1976 Sep;10(3):476–482. doi: 10.1128/aac.10.3.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Linstead D. New defined and semi-defined media for cultivation of the flagellate Trichomonas vaginalis. Parasitology. 1981 Aug;83(Pt 1):125–137. doi: 10.1017/s0031182000050101. [DOI] [PubMed] [Google Scholar]
  7. Lossick J. G., Müller M., Gorrell T. E. In vitro drug susceptibility and doses of metronidazole required for cure in cases of refractory vaginal trichomoniasis. J Infect Dis. 1986 May;153(5):948–955. doi: 10.1093/infdis/153.5.948. [DOI] [PubMed] [Google Scholar]
  8. McCabe R. E., Remington J. S., Araujo F. G. Ketoconazole inhibition of intracellular multiplication of Trypanosoma cruzi and protection of mice against lethal infection with the organism. J Infect Dis. 1984 Oct;150(4):594–601. doi: 10.1093/infdis/150.4.594. [DOI] [PubMed] [Google Scholar]
  9. Meingassner J. G., Thurner J. Strain of Trichomonas vaginalis resistant to metronidazole and other 5-nitroimidazoles. Antimicrob Agents Chemother. 1979 Feb;15(2):254–257. doi: 10.1128/aac.15.2.254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Müller M., Meingassner J. G., Miller W. A., Ledger W. J. Three metronidazole-resistant strains of Trichomonas vaginalis from the United States. Am J Obstet Gynecol. 1980 Dec 1;138(7 Pt 1):808–812. doi: 10.1016/s0002-9378(16)32741-7. [DOI] [PubMed] [Google Scholar]
  11. Pottage J. C., Jr, Kessler H. A., Goodrich J. M., Chase R., Benson C. A., Kapell K., Levin S. In vitro activity of ketoconazole against herpes simplex virus. Antimicrob Agents Chemother. 1986 Aug;30(2):215–219. doi: 10.1128/aac.30.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sears S. D., O'Hare J. In vitro susceptibility of Trichomonas vaginalis to 50 antimicrobial agents. Antimicrob Agents Chemother. 1988 Jan;32(1):144–146. doi: 10.1128/aac.32.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sud I. J., Feingold D. S. Action of antifungal imidazoles on Staphylococcus aureus. Antimicrob Agents Chemother. 1982 Sep;22(3):470–474. doi: 10.1128/aac.22.3.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sugarman B., Mummaw N. The effect of hormones on Trichomonas vaginalis. J Gen Microbiol. 1988 Jun;134(6):1623–1628. doi: 10.1099/00221287-134-6-1623. [DOI] [PubMed] [Google Scholar]
  15. Yancey R. J., Willis D. L., Berry L. J. Role of motility in experimental cholera in adult rabbits. Infect Immun. 1978 Nov;22(2):387–392. doi: 10.1128/iai.22.2.387-392.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES