Abstract
BACKGROUND: The fungus Aspergillus fumigatus, whose spores are present ubiquitously in the air, causes a range of diseases in the human lung. A small molecular weight (< 10 kD) heat stable toxin released from the spores of clinical and environmental isolates of A fumigatus within minutes of deposition in aqueous solution has previously been described. A key effect of the toxin was to inhibit the oxidative burst of macrophages as measured by superoxide anion release. It was hypothesised that the toxin was one of the commonly found A fumigatus hyphal toxins such as gliotoxin. This inhibitor may be an important factor which allows the fungus to colonise the lung. METHODS: The spore derived inhibitor was shown to inhibit the respiratory burst of rat alveolar macrophages, as measured by the generation of superoxide anion. Samples of the spore diffusate were subject to reversed phase high performance liquid chromatography (HPLC), thin layer chromatography (TLC), high performance thin layer chromatography (HPTLC), or organic extraction followed by TLC or HPLC to identify the presence of gliotoxin, fumagillin, helvolic acid, fumigaclavine-C, and aurasperone-C. Commercially obtained preparations of the toxins gliotoxin, fumagillin and helvolic acid and extracts enriched for fumigaclavine-C and aurasperone-C were used as internal and external standards and in the respiratory burst measurements. RESULTS: Gliotoxin, fumagillin, helvolic acid, fumigaclavine-C, and aurasperone- C were not detected in spore derived diffusate using PHLC or TLC. Using extraction procedures with solvents known to extract gliotoxin from A fumigatus culture supernatants, no gliotoxin was detected in the spore derived diffusate. Commercial gliotoxin, fumagillin, and helvolic acid or extracts enriched for fumigaclavine-C and aurasperone-C did not inhibit the oxidative burst of macrophages. CONCLUSIONS: The hypothesis that the spore derived toxin is one of the toxins derived from hyphae such as gliotoxin, helvolic acid, fumagillin, fumigaclavine-C, or aurasperone-C is not proved. The spore toxin may exert its effect through its ability to diffuse rapidly into the lung lining fluid, diminish the macrophage oxidative burst, and play a part in allowing A fumigatus to persist in the lung and manifest its well known pathogenic effects.
Full Text
The Full Text of this article is available as a PDF (135.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bateman E. D. A new look at the natural history of Aspergillus hypersensitivity in asthmatics. Respir Med. 1994 May;88(5):325–327. doi: 10.1016/0954-6111(94)90035-3. [DOI] [PubMed] [Google Scholar]
- Brown K., Gerstberger S., Carlson L., Franzoso G., Siebenlist U. Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science. 1995 Mar 10;267(5203):1485–1488. doi: 10.1126/science.7878466. [DOI] [PubMed] [Google Scholar]
- Cole R. J., Kirksey J. W., Dorner J. W., Wilson D. M., Johnson J. C., Jr, Johnson A. N., Bedell D. M., Springer J. P., Chexal K. K., Clardy J. C. Mycotoxins produced by Aspergillus fumigatus species isolated from molded silage. J Agric Food Chem. 1977 Jul-Aug;25(4):826–830. doi: 10.1021/jf60212a015. [DOI] [PubMed] [Google Scholar]
- Cross A. R. Inhibitors of the leukocyte superoxide generating oxidase: mechanisms of action and methods for their elucidation. Free Radic Biol Med. 1990;8(1):71–93. doi: 10.1016/0891-5849(90)90147-b. [DOI] [PubMed] [Google Scholar]
- Ehrlich K. C., DeLucca A. J., 2nd, Ciegler A. Naphtho-gamma-pyrone production by Aspergillus niger isolated from stored cottonseed. Appl Environ Microbiol. 1984 Jul;48(1):1–4. doi: 10.1128/aem.48.1.1-4.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eichner R. D., Al Salami M., Wood P. R., Müllbacher A. The effect of gliotoxin upon macrophage function. Int J Immunopharmacol. 1986;8(7):789–797. doi: 10.1016/0192-0561(86)90016-0. [DOI] [PubMed] [Google Scholar]
- Johnston R. B., Jr, Godzik C. A., Cohn Z. A. Increased superoxide anion production by immunologically activated and chemically elicited macrophages. J Exp Med. 1978 Jul 1;148(1):115–127. doi: 10.1084/jem.148.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mullins J., Harvey R., Seaton A. Sources and incidence of airborne Aspergillus fumigatus (Fres). Clin Allergy. 1976 May;6(3):209–217. doi: 10.1111/j.1365-2222.1976.tb01899.x. [DOI] [PubMed] [Google Scholar]
- Müllbacher A., Eichner R. D. Immunosuppression in vitro by a metabolite of a human pathogenic fungus. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3835–3837. doi: 10.1073/pnas.81.12.3835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicholson W. J., Slight J., Donaldson K. Inhibition of the transcription factors NF-kappa B and AP-1 underlies loss of cytokine gene expression in rat alveolar macrophages treated with a diffusible product from the spores of Aspergillus fumigatus. Am J Respir Cell Mol Biol. 1996 Jul;15(1):88–96. doi: 10.1165/ajrcmb.15.1.8679226. [DOI] [PubMed] [Google Scholar]
- Reichard U., Büttner S., Eiffert H., Staib F., Rüchel R. Purification and characterisation of an extracellular serine proteinase from Aspergillus fumigatus and its detection in tissue. J Med Microbiol. 1990 Dec;33(4):243–251. doi: 10.1099/00222615-33-4-243. [DOI] [PubMed] [Google Scholar]
- Richard J. L., Lyon R. L., Fichtner R. E., Ross P. F. Use of thin layer chromatography for detection and high performance liquid chromatography for quantitating gliotoxin from rice cultures of Aspergillus fumigatus fresenius. Mycopathologia. 1989 Sep;107(2-3):145–151. doi: 10.1007/BF00707552. [DOI] [PubMed] [Google Scholar]
- Robertson M. D., Seaton A., Milne L. J., Raeburn J. A. Resistance of spores of Aspergillus fumigatus to ingestion by phagocytic cells. Thorax. 1987 Jun;42(6):466–472. doi: 10.1136/thx.42.6.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson M. D., Seaton A., Raeburn J. A., Milne L. J. Inhibition of phagocyte migration and spreading by spore diffusates of Aspergillus fumigatus. J Med Vet Mycol. 1987 Dec;25(6):389–396. doi: 10.1080/02681218780000471. [DOI] [PubMed] [Google Scholar]
- Robertson M. D., Seaton A., Raeburn J. A., Milne L. J. Inhibition of phagocyte migration and spreading by spore diffusates of Aspergillus fumigatus. J Med Vet Mycol. 1987 Dec;25(6):389–396. doi: 10.1080/02681218780000471. [DOI] [PubMed] [Google Scholar]
- Robinson B. W., Venaille T. J., Mendis A. H., McAleer R. Allergens as proteases: an Aspergillus fumigatus proteinase directly induces human epithelial cell detachment. J Allergy Clin Immunol. 1990 Nov;86(5):726–731. doi: 10.1016/s0091-6749(05)80176-9. [DOI] [PubMed] [Google Scholar]
- Seaton A., Robertson M. D. Aspergillus, asthma, and amoebae. Lancet. 1989 Apr 22;1(8643):893–894. doi: 10.1016/s0140-6736(89)92877-8. [DOI] [PubMed] [Google Scholar]
- Slight J., Nicholson W. J., Mitchell C. G., Pouilly N., Beswick P. H., Seaton A., Donaldson K. Inhibition of the alveolar macrophage oxidative burst by a diffusible component from the surface of the spores of the fungus Aspergillus fumigatus. Thorax. 1996 Apr;51(4):389–396. doi: 10.1136/thx.51.4.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sturtevant J. E., Latgé J. P. Interactions between conidia of Aspergillus fumigatus and human complement component C3. Infect Immun. 1992 May;60(5):1913–1918. doi: 10.1128/iai.60.5.1913-1918.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waldorf A. R., Levitz S. M., Diamond R. D. In vivo bronchoalveolar macrophage defense against Rhizopus oryzae and Aspergillus fumigatus. J Infect Dis. 1984 Nov;150(5):752–760. doi: 10.1093/infdis/150.5.752. [DOI] [PubMed] [Google Scholar]
- Waring P., Newcombe N., Edel M., Lin Q. H., Jiang H., Sjaarda A., Piva T., Mullbacher A. Cellular uptake and release of the immunomodulating fungal toxin gliotoxin. Toxicon. 1994 Apr;32(4):491–504. doi: 10.1016/0041-0101(94)90301-8. [DOI] [PubMed] [Google Scholar]