Skip to main content
Thorax logoLink to Thorax
. 2004 Jan;59(1):60–66.

Low birth weight for gestation and airway function in infancy: exploring the fetal origins hypothesis

C Dezateux 1, S Lum 1, A Hoo 1, J Hawdon 1, K Costeloe 1, J Stocks 1
PMCID: PMC1758850  PMID: 14694251

Abstract

Methods: Airway function was measured using the raised volume technique in healthy white infants of low (⩽10th centile) or appropriate (⩾20th centile) birth weight for gestation and was expressed as forced expiratory volume in 0.4 s (FEV0.4), forced vital capacity (FVC), and the maximal expired flow at 25% of forced vital capacity (MEF25). Infant length and weight, maternal height and weight, maternal report of smoking prenatally and postnatally, and parental occupation were recorded.

Results: Mothers of low birth weight for gestation infants (n = 98) were lighter, shorter, and more likely to smoke and have partners in manual occupations. At 6 weeks their infants remained lighter and shorter than those of appropriate birth weight (n = 136). FEV0.4, FVC, and MEF25 were reduced in infants of low birth weight for gestation, in those whose mothers smoked in pregnancy, or who were in manual occupations. After adjusting for relevant maternal and infant characteristics, infants in the low birth weight for gestation group experienced a mean reduction of 11 ml in FEV0.4 (95% CI 4 to 18; p = 0.002), of 12 ml in FVC (95% CI 4 to 19; p = 0.004), and of 28 ml/s in MEF25 (95% CI 7 to 48; p = 0.03).

Conclusions: Airway function is diminished in early postnatal life as a consequence of a complex causal pathway which includes social disadvantage as indicated by maternal social class, smoking and height, birth weight as a proximal and related consequence of these factors, and genetic predisposition to asthma. Further work is needed to establish the relevance of these findings to subsequent airway growth and development in later infancy and early childhood.

Full Text

The Full Text of this article is available as a PDF (253.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker D. J., Godfrey K. M., Fall C., Osmond C., Winter P. D., Shaheen S. O. Relation of birth weight and childhood respiratory infection to adult lung function and death from chronic obstructive airways disease. BMJ. 1991 Sep 21;303(6804):671–675. doi: 10.1136/bmj.303.6804.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boezen H. M., Vonk J. M., van Aalderen W. M. C., Brand P. L. P., Gerritsen J., Schouten J. P., Boersma E. R. Perinatal predictors of respiratory symptoms and lung function at a young adult age. Eur Respir J. 2002 Aug;20(2):383–390. doi: 10.1183/09031936.02.00234102. [DOI] [PubMed] [Google Scholar]
  3. Chan K. N., Noble-Jamieson C. M., Elliman A., Bryan E. M., Silverman M. Lung function in children of low birth weight. Arch Dis Child. 1989 Sep;64(9):1284–1293. doi: 10.1136/adc.64.9.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dezateux C., Stocks J., Dundas I., Fletcher M. E. Impaired airway function and wheezing in infancy: the influence of maternal smoking and a genetic predisposition to asthma. Am J Respir Crit Care Med. 1999 Feb;159(2):403–410. doi: 10.1164/ajrccm.159.2.9712029. [DOI] [PubMed] [Google Scholar]
  5. Freeman J. V., Cole T. J., Chinn S., Jones P. R., White E. M., Preece M. A. Cross sectional stature and weight reference curves for the UK, 1990. Arch Dis Child. 1995 Jul;73(1):17–24. doi: 10.1136/adc.73.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hole D. J., Watt G. C., Davey-Smith G., Hart C. L., Gillis C. R., Hawthorne V. M. Impaired lung function and mortality risk in men and women: findings from the Renfrew and Paisley prospective population study. BMJ. 1996 Sep 21;313(7059):711–716. doi: 10.1136/bmj.313.7059.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hoo Ah-Fong, Dezateux Carol, Hanrahan John P., Cole Tim J., Tepper Robert S., Stocks Janet. Sex-specific prediction equations for Vmax(FRC) in infancy: a multicenter collaborative study. Am J Respir Crit Care Med. 2002 Apr 15;165(8):1084–1092. doi: 10.1164/ajrccm.165.8.2103035. [DOI] [PubMed] [Google Scholar]
  8. Hoo Ah-Fong, Dezateux Carol, Henschen Matthias, Costeloe Kate, Stocks Janet. Development of airway function in infancy after preterm delivery. J Pediatr. 2002 Nov;141(5):652–658. doi: 10.1067/mpd.2002.128114. [DOI] [PubMed] [Google Scholar]
  9. Jarvis M. J., Goddard E., Higgins V., Feyerabend C., Bryant A., Cook D. G. Children's exposure to passive smoking in England since the 1980s: cotinine evidence from population surveys. BMJ. 2000 Aug 5;321(7257):343–345. doi: 10.1136/bmj.321.7257.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jarvis M. J., Tunstall-Pedoe H., Feyerabend C., Vesey C., Saloojee Y. Comparison of tests used to distinguish smokers from nonsmokers. Am J Public Health. 1987 Nov;77(11):1435–1438. doi: 10.2105/ajph.77.11.1435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kramer M. S. Invited commentary: association between restricted fetal growth and adult chronic disease: is it causal? Is it important? Am J Epidemiol. 2000 Oct 1;152(7):605–608. doi: 10.1093/aje/152.7.605. [DOI] [PubMed] [Google Scholar]
  12. Kramer M. S., McLean F. H., Olivier M., Willis D. M., Usher R. H. Body proportionality and head and length 'sparing' in growth-retarded neonates: a critical reappraisal. Pediatrics. 1989 Oct;84(4):717–723. [PubMed] [Google Scholar]
  13. Kramer M. S., Olivier M., McLean F. H., Dougherty G. E., Willis D. M., Usher R. H. Determinants of fetal growth and body proportionality. Pediatrics. 1990 Jul;86(1):18–26. [PubMed] [Google Scholar]
  14. Lieberman E., Torday J., Barbieri R., Cohen A., Van Vunakis H., Weiss S. T. Association of intrauterine cigarette smoke exposure with indices of fetal lung maturation. Obstet Gynecol. 1992 Apr;79(4):564–570. [PubMed] [Google Scholar]
  15. Lopuhaä C. E., Roseboom T. J., Osmond C., Barker D. J., Ravelli A. C., Bleker O. P., van der Zee J. S., van der Meulen J. H. Atopy, lung function, and obstructive airways disease after prenatal exposure to famine. Thorax. 2000 Jul;55(7):555–561. doi: 10.1136/thorax.55.7.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lucas A., Fewtrell M. S., Cole T. J. Fetal origins of adult disease-the hypothesis revisited. BMJ. 1999 Jul 24;319(7204):245–249. doi: 10.1136/bmj.319.7204.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lum S., Hoo A. F., Dezateux C., Goetz I., Wade A., DeRooy L., Costeloe K., Stocks J. The association between birthweight, sex, and airway function in infants of nonsmoking mothers. Am J Respir Crit Care Med. 2001 Dec 1;164(11):2078–2084. doi: 10.1164/ajrccm.164.11.2104053. [DOI] [PubMed] [Google Scholar]
  18. Lum Sooky, Hoo Ah-Fong, Stocks Janet. Effect of airway inflation pressure on forced expiratory maneuvers from raised lung volume in infants. Pediatr Pulmonol. 2002 Feb;33(2):130–134. doi: 10.1002/ppul.10060. [DOI] [PubMed] [Google Scholar]
  19. Martinez F. D., Morgan W. J., Wright A. L., Holberg C. J., Taussig L. M. Diminished lung function as a predisposing factor for wheezing respiratory illness in infants. N Engl J Med. 1988 Oct 27;319(17):1112–1117. doi: 10.1056/NEJM198810273191702. [DOI] [PubMed] [Google Scholar]
  20. McNeill A. D., Jarvis M. J., West R., Russell M. A., Bryant A. Saliva cotinine as an indicator of cigarette smoking in adolescents. Br J Addict. 1987 Dec;82(12):1355–1360. doi: 10.1111/j.1360-0443.1987.tb00439.x. [DOI] [PubMed] [Google Scholar]
  21. Owen L., McNeill A., Callum C. Trends in smoking during pregnancy in England, 1992-7: quota sampling surveys. BMJ. 1998 Sep 12;317(7160):728–728. doi: 10.1136/bmj.317.7160.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Prechtl H. F. The behavioural states of the newborn infant (a review). Brain Res. 1974 Aug 16;76(2):185–212. doi: 10.1016/0006-8993(74)90454-5. [DOI] [PubMed] [Google Scholar]
  23. Ranganathan S. C., Dezateux C., Bush A., Carr S. B., Castle R. A., Madge S., Price J., Stroobant J., Wade A., Wallis C. Airway function in infants newly diagnosed with cystic fibrosis. Lancet. 2001 Dec 8;358(9297):1964–1965. doi: 10.1016/s0140-6736(01)06970-7. [DOI] [PubMed] [Google Scholar]
  24. Ranganathan S. C., Hoo A. F., Lum S. Y., Goetz I., Castle R. A., Stocks J. Exploring the relationship between forced maximal flow at functional residual capacity and parameters of forced expiration from raised lung volume in healthy infants. Pediatr Pulmonol. 2002 Jun;33(6):419–428. doi: 10.1002/ppul.10086. [DOI] [PubMed] [Google Scholar]
  25. Rona R. J., Gulliford M. C., Chinn S. Effects of prematurity and intrauterine growth on respiratory health and lung function in childhood. BMJ. 1993 Mar 27;306(6881):817–820. doi: 10.1136/bmj.306.6881.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shaheen S. O., Sterne J. A., Montgomery S. M., Azima H. Birth weight, body mass index and asthma in young adults. Thorax. 1999 May;54(5):396–402. doi: 10.1136/thx.54.5.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shaheen S. O., Sterne J. A., Tucker J. S., Florey C. D. Birth weight, childhood lower respiratory tract infection, and adult lung function. Thorax. 1998 Jul;53(7):549–553. doi: 10.1136/thx.53.7.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stein C. E., Kumaran K., Fall C. H., Shaheen S. O., Osmond C., Barker D. J. Relation of fetal growth to adult lung function in south India. Thorax. 1997 Oct;52(10):895–899. doi: 10.1136/thx.52.10.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Susser M., Levin B. Ordeals for the fetal programming hypothesis. The hypothesis largely survives one ordeal but not another. BMJ. 1999 Apr 3;318(7188):885–886. doi: 10.1136/bmj.318.7188.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tager I. B., Ngo L., Hanrahan J. P. Maternal smoking during pregnancy. Effects on lung function during the first 18 months of life. Am J Respir Crit Care Med. 1995 Sep;152(3):977–983. doi: 10.1164/ajrccm.152.3.7663813. [DOI] [PubMed] [Google Scholar]
  31. Tantisira K. G., Weiss S. T. Childhood infections and asthma: at the crossroads of the hygiene and Barker hypotheses. Respir Res. 2001 Sep 13;2(6):324–327. doi: 10.1186/rr81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wang X., Tager I. B., Van Vunakis H., Speizer F. E., Hanrahan J. P. Maternal smoking during pregnancy, urine cotinine concentrations, and birth outcomes. A prospective cohort study. Int J Epidemiol. 1997 Oct;26(5):978–988. doi: 10.1093/ije/26.5.978. [DOI] [PubMed] [Google Scholar]
  33. Wilcox M. A., Johnson I. R., Maynard P. V., Smith S. J., Chilvers C. E. The individualised birthweight ratio: a more logical outcome measure of pregnancy than birthweight alone. Br J Obstet Gynaecol. 1993 Apr;100(4):342–347. doi: 10.1111/j.1471-0528.1993.tb12977.x. [DOI] [PubMed] [Google Scholar]
  34. Young S., Le Souëf P. N., Geelhoed G. C., Stick S. M., Turner K. J., Landau L. I. The influence of a family history of asthma and parental smoking on airway responsiveness in early infancy. N Engl J Med. 1991 Apr 25;324(17):1168–1173. doi: 10.1056/NEJM199104253241704. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES