Skip to main content
Thorax logoLink to Thorax
. 2004 Jan;59(1):31–38. doi: 10.1136/thx.2003.000893

Reduction of bleomycin induced lung fibrosis by candesartan cilexetil, an angiotensin II type 1 receptor antagonist

M Otsuka 1, H Takahashi 1, M Shiratori 1, H Chiba 1, S Abe 1
PMCID: PMC1758867  PMID: 14694243

Abstract

Methods: Adult male Sprague-Dawley rats were given 0.3 mg/kg BLM intratracheally. Two days earlier they had received 10 mg/kg/day of the AT1 antagonist candesartan cilexetil mixed in the drinking water. AT1 expression in the lungs was examined by immunohistochemistry and immunoblot methods. The effect of the AT1 antagonist on pulmonary fibrosis was studied by analysis of bronchoalveolar lavage (BAL) fluid, histopathology, and hydroxyproline assay.

Results: Immunohistochemical studies showed overexpression of AT1 in inflammatory immune cells, alveolar type II cells, and fibroblasts. A quantitative assay for AT1 showed that AT1 expression was significantly upregulated in cells from BAL fluid after day 3 and in the lung homogenates after day 21. Candesartan cilexetil significantly inhibited the increase in total protein and albumin, as well as the increase in total cells and neutrophils in BAL fluid. On day 21 candesartan cilexetil also ameliorated morphological changes and an increased amount of hydroxyproline in lung homogenates. In addition, BLM increased the expression of transforming growth factor (TGF)-ß1 in BAL fluid on day 7; this increase was significantly reduced by candesartan cilexetil.

Conclusion: AT1 expression is upregulated in fibrotic lungs. Angiotensin II promotes lung fibrosis via AT1 and, presumably, in part via TGF-ß1.

Full Text

The Full Text of this article is available as a PDF (680.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Broekelmann T. J., Limper A. H., Colby T. V., McDonald J. A. Transforming growth factor beta 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6642–6646. doi: 10.1073/pnas.88.15.6642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bullock G. R., Steyaert I., Bilbe G., Carey R. M., Kips J., De Paepe B., Pauwels R., Praet M., Siragy H. M., de Gasparo M. Distribution of type-1 and type-2 angiotensin receptors in the normal human lung and in lungs from patients with chronic obstructive pulmonary disease. Histochem Cell Biol. 2001 Feb;115(2):117–124. doi: 10.1007/s004180000235. [DOI] [PubMed] [Google Scholar]
  3. Burnier M., Brunner H. R. Angiotensin II receptor antagonists. Lancet. 2000 Feb 19;355(9204):637–645. doi: 10.1016/s0140-6736(99)10365-9. [DOI] [PubMed] [Google Scholar]
  4. Carré P. C., Mortenson R. L., King T. E., Jr, Noble P. W., Sable C. L., Riches D. W. Increased expression of the interleukin-8 gene by alveolar macrophages in idiopathic pulmonary fibrosis. A potential mechanism for the recruitment and activation of neutrophils in lung fibrosis. J Clin Invest. 1991 Dec;88(6):1802–1810. doi: 10.1172/JCI115501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Datta P. K., Moulder J. E., Fish B. L., Cohen E. P., Lianos E. A. TGF-beta 1 production in radiation nephropathy: role of angiotensin II. Int J Radiat Biol. 1999 Apr;75(4):473–479. doi: 10.1080/095530099140401. [DOI] [PubMed] [Google Scholar]
  6. Elferink J. G., de Koster B. M. The stimulation of human neutrophil migration by angiotensin IL: its dependence on Ca2+ and the involvement of cyclic GMP. Br J Pharmacol. 1997 Jun;121(4):643–648. doi: 10.1038/sj.bjp.0701167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Farber H. W., Center D. M., Rounds S., Danilov S. M. Components of the angiotensin system cause release of a neutrophil chemoattractant from cultured bovine and human endothelial cells. Eur Heart J. 1990 Apr;11 (Suppl B):100–107. doi: 10.1093/eurheartj/11.suppl_b.100. [DOI] [PubMed] [Google Scholar]
  8. Gräfe M., Auch-Schwelk W., Zakrzewicz A., Regitz-Zagrosek V., Bartsch P., Graf K., Loebe M., Gaehtgens P., Fleck E. Angiotensin II-induced leukocyte adhesion on human coronary endothelial cells is mediated by E-selectin. Circ Res. 1997 Nov;81(5):804–811. doi: 10.1161/01.res.81.5.804. [DOI] [PubMed] [Google Scholar]
  9. Harrison-Bernard L. M., El-Dahr S. S., O'Leary D. F., Navar L. G. Regulation of angiotensin II type 1 receptor mRNA and protein in angiotensin II-induced hypertension. Hypertension. 1999 Jan;33(1 Pt 2):340–346. doi: 10.1161/01.hyp.33.1.340. [DOI] [PubMed] [Google Scholar]
  10. Hernández-Presa M. A., Bustos C., Ortego M., Tuñn J., Ortega L., Egido J. ACE inhibitor quinapril reduces the arterial expression of NF-kappaB-dependent proinflammatory factors but not of collagen I in a rabbit model of atherosclerosis. Am J Pathol. 1998 Dec;153(6):1825–1837. doi: 10.1016/s0002-9440(10)65697-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ito H., Takemori K., Suzuki T. Role of angiotensin II type 1 receptor in the leucocytes and endothelial cells of brain microvessels in the pathogenesis of hypertensive cerebral injury. J Hypertens. 2001 Mar;19(3 Pt 2):591–597. doi: 10.1097/00004872-200103001-00011. [DOI] [PubMed] [Google Scholar]
  12. Kagami S., Border W. A., Miller D. E., Noble N. A. Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells. J Clin Invest. 1994 Jun;93(6):2431–2437. doi: 10.1172/JCI117251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Khalil N., Bereznay O., Sporn M., Greenberg A. H. Macrophage production of transforming growth factor beta and fibroblast collagen synthesis in chronic pulmonary inflammation. J Exp Med. 1989 Sep 1;170(3):727–737. doi: 10.1084/jem.170.3.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Khalil N., O'Connor R. N., Unruh H. W., Warren P. W., Flanders K. C., Kemp A., Bereznay O. H., Greenberg A. H. Increased production and immunohistochemical localization of transforming growth factor-beta in idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 1991 Aug;5(2):155–162. doi: 10.1165/ajrcmb/5.2.155. [DOI] [PubMed] [Google Scholar]
  15. Kivirikko K. I., Laitinen O., Prockop D. J. Modifications of a specific assay for hydroxyproline in urine. Anal Biochem. 1967 May;19(2):249–255. doi: 10.1016/0003-2697(67)90160-1. [DOI] [PubMed] [Google Scholar]
  16. Kojima M., Shiojima I., Yamazaki T., Komuro I., Zou Z., Wang Y., Mizuno T., Ueki K., Tobe K., Kadowaki T. Angiotensin II receptor antagonist TCV-116 induces regression of hypertensive left ventricular hypertrophy in vivo and inhibits the intracellular signaling pathway of stretch-mediated cardiomyocyte hypertrophy in vitro. Circulation. 1994 May;89(5):2204–2211. doi: 10.1161/01.cir.89.5.2204. [DOI] [PubMed] [Google Scholar]
  17. Lee A. A., Dillmann W. H., McCulloch A. D., Villarreal F. J. Angiotensin II stimulates the autocrine production of transforming growth factor-beta 1 in adult rat cardiac fibroblasts. J Mol Cell Cardiol. 1995 Oct;27(10):2347–2357. doi: 10.1016/s0022-2828(95)91983-x. [DOI] [PubMed] [Google Scholar]
  18. Marshall R. P., McAnulty R. J., Laurent G. J. Angiotensin II is mitogenic for human lung fibroblasts via activation of the type 1 receptor. Am J Respir Crit Care Med. 2000 Jun;161(6):1999–2004. doi: 10.1164/ajrccm.161.6.9907004. [DOI] [PubMed] [Google Scholar]
  19. McKay S., de Jongste J. C., Saxena P. R., Sharma H. S. Angiotensin II induces hypertrophy of human airway smooth muscle cells: expression of transcription factors and transforming growth factor-beta1. Am J Respir Cell Mol Biol. 1998 Jun;18(6):823–833. doi: 10.1165/ajrcmb.18.6.2924. [DOI] [PubMed] [Google Scholar]
  20. Molteni A., Moulder J. E., Cohen E. F., Ward W. F., Fish B. L., Taylor J. M., Wolfe L. F., Brizio-Molteni L., Veno P. Control of radiation-induced pneumopathy and lung fibrosis by angiotensin-converting enzyme inhibitors and an angiotensin II type 1 receptor blocker. Int J Radiat Biol. 2000 Apr;76(4):523–532. doi: 10.1080/095530000138538. [DOI] [PubMed] [Google Scholar]
  21. Morrell N. W., Grieshaber S. S., Danilov S. M., Majack R. A., Stenmark K. R. Developmental regulation of angiotensin converting enzyme and angiotensin type 1 receptor in the rat pulmonary circulation. Am J Respir Cell Mol Biol. 1996 Jun;14(6):526–537. doi: 10.1165/ajrcmb.14.6.8652181. [DOI] [PubMed] [Google Scholar]
  22. Schorb W., Booz G. W., Dostal D. E., Conrad K. M., Chang K. C., Baker K. M. Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts. Circ Res. 1993 Jun;72(6):1245–1254. doi: 10.1161/01.res.72.6.1245. [DOI] [PubMed] [Google Scholar]
  23. Sears Malcolm R., Greene Justina M., Willan Andrew R., Wiecek Elizabeth M., Taylor D. Robin, Flannery Erin M., Cowan Jan O., Herbison G. Peter, Silva Phil A., Poulton Richie. A longitudinal, population-based, cohort study of childhood asthma followed to adulthood. N Engl J Med. 2003 Oct 9;349(15):1414–1422. doi: 10.1056/NEJMoa022363. [DOI] [PubMed] [Google Scholar]
  24. Song L., Wang D., Cui X., Shi Z., Yang H. Kinetic alterations of angiotensin-II and nitric oxide in radiation pulmonary fibrosis. J Environ Pathol Toxicol Oncol. 1998;17(2):141–150. [PubMed] [Google Scholar]
  25. Specks U., Martin W. J., 2nd, Rohrbach M. S. Bronchoalveolar lavage fluid angiotensin-converting enzyme in interstitial lung diseases. Am Rev Respir Dis. 1990 Jan;141(1):117–123. doi: 10.1164/ajrccm/141.1.117. [DOI] [PubMed] [Google Scholar]
  26. Stouffer G. A., Owens G. K. Angiotensin II-induced mitogenesis of spontaneously hypertensive rat-derived cultured smooth muscle cells is dependent on autocrine production of transforming growth factor-beta. Circ Res. 1992 Apr;70(4):820–828. doi: 10.1161/01.res.70.4.820. [DOI] [PubMed] [Google Scholar]
  27. Sun Y., Zhang J. Q., Zhang J., Ramires F. J. Angiotensin II, transforming growth factor-beta1 and repair in the infarcted heart. J Mol Cell Cardiol. 1998 Aug;30(8):1559–1569. doi: 10.1006/jmcc.1998.0721. [DOI] [PubMed] [Google Scholar]
  28. Tanaka A., Matsumori A., Wang W., Sasayama S. An angiotensin II receptor antagonist reduces myocardial damage in an animal model of myocarditis. Circulation. 1994 Oct;90(4):2051–2055. doi: 10.1161/01.cir.90.4.2051. [DOI] [PubMed] [Google Scholar]
  29. Thrall R. S., McCormick J. R., Jack R. M., McReynolds R. A., Ward P. A. Bleomycin-induced pulmonary fibrosis in the rat: inhibition by indomethacin. Am J Pathol. 1979 Apr;95(1):117–130. [PMC free article] [PubMed] [Google Scholar]
  30. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Villarreal F. J., Kim N. N., Ungab G. D., Printz M. P., Dillmann W. H. Identification of functional angiotensin II receptors on rat cardiac fibroblasts. Circulation. 1993 Dec;88(6):2849–2861. doi: 10.1161/01.cir.88.6.2849. [DOI] [PubMed] [Google Scholar]
  32. Yanagitani Y., Rakugi H., Okamura A., Moriguchi K., Takiuchi S., Ohishi M., Suzuki K., Higaki J., Ogihara T. Angiotensin II type 1 receptor-mediated peroxide production in human macrophages. Hypertension. 1999 Jan;33(1 Pt 2):335–339. doi: 10.1161/01.hyp.33.1.335. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES