Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1988 Nov;32(11):1705–1709. doi: 10.1128/aac.32.11.1705

Temocillin efficacy in experimental Klebsiella pneumoniae meningitis after infusion into rabbit plasma to simulate antibiotic concentrations in human serum.

G Woodnutt 1, E J Catherall 1, I Kernutt 1, L Mizen 1
PMCID: PMC175955  PMID: 3252752

Abstract

An infusion system was developed to simulate in the plasma of rabbits the concentrations of temocillin in human serum measured after administration of a 2-g intravenous bolus dose. The efficacy of therapy with this infusion against experimental Klebsiella pneumoniae meningitis was compared with that of a conventional bolus dose to the animals. The marked difference between the elimination half-life (t1/2) of temocillin in rabbit plasma and human serum (0.3 and 5 h, respectively) was reflected in concentrations in cerebrospinal fluid (CSF). The mean peak concentration after infusion occurred 3.5 h later than after bolus dosing, and levels were more prolonged (t1/2 in CSF was 6.3 h compared with 0.83 h following the bolus dose). After infusion, the mean viable count in CSF decreased by 4 log10 CFU/ml, whereas the bolus dose was ineffective because of the rapid fall to subinhibitory concentrations. These results suggest that the infusion system used is valuable for experimental studies with antibacterial agents whose elimination kinetics differ markedly between animals and humans.

Full text

PDF
1705

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berk S. L., McCabe W. R. Meningitis caused by gram-negative bacilli. Ann Intern Med. 1980 Aug;93(2):253–260. doi: 10.7326/0003-4819-93-2-253. [DOI] [PubMed] [Google Scholar]
  2. Cherubin C. E., Marr J. S., Sierra M. F., Becker S. Listeria and gram-negative bacillary meningitis in New York City, 1972-1979. Frequent causes of meningitis in adults. Am J Med. 1981 Aug;71(2):199–209. doi: 10.1016/0002-9343(81)90106-6. [DOI] [PubMed] [Google Scholar]
  3. Gerber A. U., Brugger H. P., Feller C., Stritzko T., Stalder B. Antibiotic therapy of infections due to Pseudomonas aeruginosa in normal and granulocytopenic mice: comparison of murine and human pharmacokinetics. J Infect Dis. 1986 Jan;153(1):90–97. doi: 10.1093/infdis/153.1.90. [DOI] [PubMed] [Google Scholar]
  4. Hampel B., Feike M., Koeppe P., Lode H. Pharmacokinetics of temocillin in volunteers. Drugs. 1985;29 (Suppl 5):99–102. doi: 10.2165/00003495-198500295-00020. [DOI] [PubMed] [Google Scholar]
  5. Komiya I., Nishio M., Murata S., Chiba F., Sakurai T., Shinkai S., Fujita M. A novel method to predict the elimination half-lives and the renal excretion mechanisms of cephalosporins. J Pharmacobiodyn. 1984 Aug;7(8):545–555. doi: 10.1248/bpb1978.7.545. [DOI] [PubMed] [Google Scholar]
  6. Lockley M. R., Brown R. M., Wise R. Pharmacokinetics and tissue penetration of temocillin. Drugs. 1985;29 (Suppl 5):106–108. doi: 10.2165/00003495-198500295-00022. [DOI] [PubMed] [Google Scholar]
  7. Mangi R. J., Quintiliani R., Andriole V. T. Gram-negative bacillary meningitis. Am J Med. 1975 Dec;59(6):829–836. doi: 10.1016/0002-9343(75)90468-4. [DOI] [PubMed] [Google Scholar]
  8. Mattie H. Animal models in antibacterial drug research. J Antimicrob Chemother. 1984 Aug;14(2):101–102. doi: 10.1093/jac/14.2.101. [DOI] [PubMed] [Google Scholar]
  9. Nielsen-Kudsk F. Pharmacokinetic analysis and calculations using a program for the minicalculator TI-59. Int J Biomed Comput. 1981 Jan;12(1):83–96. doi: 10.1016/0020-7101(81)90028-3. [DOI] [PubMed] [Google Scholar]
  10. Noble J. T., Barza M. Pharmacokinetic properties of the newer cephalosporins. A valid basis for drug selection? Drugs. 1985 Sep;30(3):175–181. doi: 10.2165/00003495-198530030-00001. [DOI] [PubMed] [Google Scholar]
  11. Overbosch D., van Gulpen C., Mattie H. Renal clearance of temocillin in volunteers. Drugs. 1985;29 (Suppl 5):128–134. doi: 10.2165/00003495-198500295-00027. [DOI] [PubMed] [Google Scholar]
  12. Ronfeld R. A., Benet L. Z. Interpretation of plasma concentration-time curves after oral dosing. J Pharm Sci. 1977 Feb;66(2):178–180. doi: 10.1002/jps.2600660211. [DOI] [PubMed] [Google Scholar]
  13. Sakata Y., Boccazzi A., McCracken G. H., Jr Pharmacokinetics and bacteriological effect of ceftazidime in experimental Streptococcus pneumoniae, Haemophilus influenzae, and Escherichia coli meningitis. Antimicrob Agents Chemother. 1983 Feb;23(2):213–217. doi: 10.1128/aac.23.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Slocombe B., Basker M. J., Bentley P. H., Clayton J. P., Cole M., Comber K. R., Dixon R. A., Edmondson R. A., Jackson D., Merrikin D. J. BRL 17421, a novel beta-lactam antibiotic, highly resistant to beta-lactamases, giving high and prolonged serum levels in humans. Antimicrob Agents Chemother. 1981 Jul;20(1):38–46. doi: 10.1128/aac.20.1.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Smith A. L., Greenfield M. D., Toothaker R. D. Experimental meningitis in the rat: Haemophilus influenzae. Infection. 1984;12 (Suppl 1):S11–S22. doi: 10.1007/BF01641734. [DOI] [PubMed] [Google Scholar]
  16. Swabb E. A., Bonner D. P. Prediction of aztreonam pharmacokinetics in humans based on data from animals. J Pharmacokinet Biopharm. 1983 Jun;11(3):215–223. doi: 10.1007/BF01061865. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES