Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1990 Jul;34(7):1312–1317. doi: 10.1128/aac.34.7.1312

Quantitative analysis of antimicrobial effect kinetics in an in vitro dynamic model.

A A Firsov 1, V M Chernykh 1, S M Navashin 1
PMCID: PMC175972  PMID: 2117416

Abstract

Variants of the available methods for estimating antimicrobial effect kinetics in an in vitro dynamic model were analyzed. Two integral parameters characterizing antimicrobial effect duration (TE) and intensity (IE) are suggested to define and analyze the concentration-effect relationships in these models, irrespective of the method of recording. TE is defined by the time from the moment of antibiotic administration to the movement when the bacterial count again reaches its initial level. IE is defined by the area between the microbial growth curves in the presence and absence of an antibiotic. TE and IE were used to quantify the antimicrobial effects of sisomicin on Pseudomonas aeruginosa 58, Escherichia coli 93, and Klebsiella pneumoniae 5056, simulating the pharmacokinetic profiles of the drugs observed following intramuscular administration in therapeutic doses, including the variability of aminoglycoside concentrations in human blood.

Full text

PDF
1312

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blaser J., Stone B. B., Groner M. C., Zinner S. H. Impact of netilmicin regimens on the activities of ceftazidime-netilmicin combinations against Pseudomonas aeruginosa in an in vitro pharmacokinetic model. Antimicrob Agents Chemother. 1985 Jul;28(1):64–68. doi: 10.1128/aac.28.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen A., Wadsö I. A test and calibration process for microcalorimeters used as thermal power meters. J Biochem Biophys Methods. 1982 Sep;6(4):297–306. doi: 10.1016/0165-022x(82)90011-2. [DOI] [PubMed] [Google Scholar]
  3. Chernykh V. M., Firsov A. A. Kinetika antimikrobnogo éffekta v dinamicheskoi sisteme: mikrokalorimetricheskii metod registratsii i vybor parametrov dlia kharakteristiki kineticheskikh krivykh. Antibiot Med Biotekhnol. 1985 Jul;30(7):498–503. [PubMed] [Google Scholar]
  4. Drugeon H. B., Maurisset B., Chung S. S., Courtieu A. L. Activité bactéricide des antibiotiques en fonction des constantes pharmacocinétiques. II.--Influence des paramètres pharmacocinétiques (C max et Ke) sur l'activité bactéricide de la gentamicine. Pathol Biol (Paris) 1982 Dec;30(10):840–842. [PubMed] [Google Scholar]
  5. Krüger D., Giesbrecht P. Flow microcalorimetry as a tool for an improved analysis of antibiotic activity: the different stages of chloramphenicol action. Experientia. 1989 Apr 15;45(4):322–325. doi: 10.1007/BF01957463. [DOI] [PubMed] [Google Scholar]
  6. Murakawa T., Sakamoto H., Hirose T., Nishida M. New in vitro kinetic model for evaluating bactericidal efficacy of antibiotics. Antimicrob Agents Chemother. 1980 Sep;18(3):377–381. doi: 10.1128/aac.18.3.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Navashin S. M., Fomina I. P., Firsov A. A., Chernykh V. M., Kuznetsova S. M. A dynamic model for in-vitro evaluation of antimicrobial action by simulation of the pharmacokinetic profiles of antibiotics. J Antimicrob Chemother. 1989 Mar;23(3):389–399. doi: 10.1093/jac/23.3.389. [DOI] [PubMed] [Google Scholar]
  8. Sanfilippo A., Mazzoleni R. Antibacterial activity of aminosidine and of beta-lactamic antibiotics. Farmaco Prat. 1974 Jan;29(1):21–26. [PubMed] [Google Scholar]
  9. Schneider P., Tosch W., Maurer M., Zak O. Antibacterial effects of cefroxadine, cephalexin and cephradine in a new in vitro pharmacokinetic model. J Antibiot (Tokyo) 1982 Jul;35(7):843–849. doi: 10.7164/antibiotics.35.843. [DOI] [PubMed] [Google Scholar]
  10. Shah P. M. An improved method to study antibacterial activity of antibiotics in an in vitro model simulating serum levels. Methods Find Exp Clin Pharmacol. 1980 Aug;2(4):171–176. [PubMed] [Google Scholar]
  11. Shah P. M. In-vitro activity of cefotetan, other beta-lactams and netilmicin. J Antimicrob Chemother. 1983 Jan;11 (Suppl):73–78. doi: 10.1093/jac/11.suppl_a.73. [DOI] [PubMed] [Google Scholar]
  12. White C. A., Toothaker R. D. Influence of ampicillin elimination half-life on in-vitro bactericidal effect. J Antimicrob Chemother. 1985 Jan;15 (Suppl A):257–260. doi: 10.1093/jac/15.suppl_a.257. [DOI] [PubMed] [Google Scholar]
  13. Wiedemann B., Hüsing W. The use of bacteria producing the aminoglycoside inactivating enzyme ANT-(2") in an in-vitro model. J Antimicrob Chemother. 1985 Jan;15 (Suppl A):251–256. doi: 10.1093/jac/15.suppl_a.251. [DOI] [PubMed] [Google Scholar]
  14. Wiedemann B., Seeberg A. H. The activity of cefotiam on beta-lactamase-producing bacteria in an in-vitro model. J Antimicrob Chemother. 1984 Feb;13(2):111–119. doi: 10.1093/jac/13.2.111. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES