Abstract
Difloxacin, A-56620, cefazolin, cefotaxime, ceftizoxime, cephapirin, SK&F 88070, and spectinomycin were used to compare the in vitro susceptibilities of Mycobacterium avium-M. intracellular isolates from patients with acquired immunodeficiency syndrome (AIDS), patients without AIDS, and diseased animals. Against the isolates from humans without AIDS, the quinolone compounds difloxacin and A-56620 were found to be the most effective, each inhibiting 50% of strains at a concentration of 2 micrograms/ml. The remaining antimicrobial agents had MICs for 50% of strains tested of at least 32 micrograms/ml. Statistically significant differences were observed in the antibiogram patterns among the M. avium-M. intracellulare strains from each of the three sources.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berlin O. G., Young L. S., Bruckner D. A. In-vitro activity of six fluorinated quinolones against Mycobacterium tuberculosis. J Antimicrob Chemother. 1987 May;19(5):611–615. doi: 10.1093/jac/19.5.611. [DOI] [PubMed] [Google Scholar]
- Byrne S. K., Crawford C. E., Geddes G. L., Black W. A. In vitro susceptibilities of Mycobacterium tuberculosis to 10 antimicrobial agents. Antimicrob Agents Chemother. 1988 Sep;32(9):1441–1442. doi: 10.1128/aac.32.9.1441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dutt A. K., Stead W. W. Long-term results of medical treatment in Mycobacterium intracellulare infection. Am J Med. 1979 Sep;67(3):449–453. doi: 10.1016/0002-9343(79)90792-7. [DOI] [PubMed] [Google Scholar]
- Fenlon C. H., Cynamon M. H. Comparative in vitro activities of ciprofloxacin and other 4-quinolones against Mycobacterium tuberculosis and Mycobacterium intracellulare. Antimicrob Agents Chemother. 1986 Mar;29(3):386–388. doi: 10.1128/aac.29.3.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hampson S. J., Portaels F., Thompson J., Green E. P., Moss M. T., Hermon-Taylor J., McFadden J. J. DNA probes demonstrate a single highly conserved strain of Mycobacterium avium infecting AIDS patients. Lancet. 1989 Jan 14;1(8629):65–68. doi: 10.1016/s0140-6736(89)91427-x. [DOI] [PubMed] [Google Scholar]
- Heifets L. B., Lindholm-Levy P. J. Bacteriostatic and bactericidal activity of ciprofloxacin and ofloxacin against Mycobacterium tuberculosis and Mycobacterium avium complex. Tubercle. 1987 Dec;68(4):267–276. doi: 10.1016/0041-3879(87)90067-5. [DOI] [PubMed] [Google Scholar]
- Rosenzweig D. Y. Pulmonary mycobacterial infections due to Mycobacterium intracellulare-avium complex. Clinical features and course in 100 consecutive cases. Chest. 1979 Feb;75(2):115–119. doi: 10.1378/chest.75.2.115. [DOI] [PubMed] [Google Scholar]
- Swenson J. M., Thornsberry C., Silcox V. A. Rapidly growing mycobacteria: testing of susceptibility to 34 antimicrobial agents by broth microdilution. Antimicrob Agents Chemother. 1982 Aug;22(2):186–192. doi: 10.1128/aac.22.2.186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wayne L. G., Krichevsky M. I., Portyrata D., Jackson C. K. Diagnostic probability matrix for identification of slowly growing mycobacteria in clinical laboratories. J Clin Microbiol. 1984 Oct;20(4):722–729. doi: 10.1128/jcm.20.4.722-729.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yajko D. M., Nassos P. S., Hadley W. K. Therapeutic implications of inhibition versus killing of Mycobacterium avium complex by antimicrobial agents. Antimicrob Agents Chemother. 1987 Jan;31(1):117–120. doi: 10.1128/aac.31.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
