Abstract
A unique metabolic feature of malaria parasites is their restricted ability to synthesize nucleotides. These parasites are unable to synthesize the purine ring and must therefore obtain preformed purine bases and nucleosides from the host cell, the erythrocyte. On the other hand, pyrimidines must be synthesized de novo because of the inability of the parasites to salvage preformed pyrimidines. Thus, one would anticipate that the blockage of purine salvage or pyrimidine de novo synthesis should adversely affect parasite growth. This premise was tested in vitro with a total of 64 compounds, mostly purine and pyrimidine analogs, known to inhibit one or more steps of nucleotide synthesis. Of the 64 compounds, 22 produced a 50% inhibition of the growth of the human malaria parasite Plasmodium falciparum at a concentration of 50 microM or less. Inhibition of the growth of chloroquine-resistant clones of P. falciparum did not differ significantly from that of the growth of chloroquine-susceptible clones. Two of the compounds which effectively inhibited parasite growth, 6-mercaptopurine and 6-thioguanine, were found to be potent competitive inhibitors of a key purine-salvaging enzyme (hypoxanthine-guanine-xanthine phosphoribosyltransferase) of the parasite.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agarwal R. P., Sagar S. M., Parks R. E., Jr Adenosine deaminase from human erythrocytes: purification and effects of adenosine analogs. Biochem Pharmacol. 1975 Mar 15;24(6):693–701. doi: 10.1016/0006-2952(75)90245-2. [DOI] [PubMed] [Google Scholar]
- Aoki T., Oya H. Inactivation of Crithidia fasciculata carbamoyl phosphate synthetase II by the antitumor drug acivicin. Mol Biochem Parasitol. 1987 Mar;23(2):173–181. doi: 10.1016/0166-6851(87)90153-8. [DOI] [PubMed] [Google Scholar]
- BOSCH L., HARBERS E., HEIDELBERGER C. Studies on fluorinated pyrimidines. V. Effects on nucleic acid metabolism in vitro. Cancer Res. 1958 Apr;18(3):335–343. [PubMed] [Google Scholar]
- Bennett L. L., Jr, Smithers D., Rose L. M., Adamson D. J., Thomas H. J. Inhibition of synthesis of pyrimidine nucleotides by 2-hydroxy-3-(3,3-dichloroallyl)-1,4-naphthoquinone. Cancer Res. 1979 Dec;39(12):4868–4874. [PubMed] [Google Scholar]
- Berman J. D., Webster H. K. In vitro effects of mycophenolic acid and allopurinol against Leishmania tropica in human macrophages. Antimicrob Agents Chemother. 1982 Jun;21(6):887–891. doi: 10.1128/aac.21.6.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Childs G. E., Lambros C. Analogues of N-benzyloxydihydrotriazines: in vitro antimalarial activity against Plasmodium falciparum. Ann Trop Med Parasitol. 1986 Apr;80(2):177–181. doi: 10.1080/00034983.1986.11812002. [DOI] [PubMed] [Google Scholar]
- Chulay J. D., Haynes J. D., Diggs C. L. Plasmodium falciparum: assessment of in vitro growth by [3H]hypoxanthine incorporation. Exp Parasitol. 1983 Feb;55(1):138–146. doi: 10.1016/0014-4894(83)90007-3. [DOI] [PubMed] [Google Scholar]
- DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denton J. E., Lui M. S., Aoki T., Sebolt J., Weber G. Rapid in vivo inactivation by acivicin of CTP synthetase, carbamoyl-phosphate synthetase II, and amidophosphoribosyltransferase in hepatoma. Life Sci. 1982 Mar 29;30(13):1073–1080. doi: 10.1016/0024-3205(82)90527-6. [DOI] [PubMed] [Google Scholar]
- Desjardins R. E., Canfield C. J., Haynes J. D., Chulay J. D. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979 Dec;16(6):710–718. doi: 10.1128/aac.16.6.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dix D. E., Lehman C. P., Jakubowski A., Moyer J. D., Handschumacher R. E. Pyrazofurin metabolism, enzyme inhibition, and resistance in L5178Y cells. Cancer Res. 1979 Nov;39(11):4485–4490. [PubMed] [Google Scholar]
- Fairlamb A. H., Bowman I. B. Uptake of the trypanocidal drug suramin by bloodstream forms of Trypanosoma brucei and its effect on respiration and growth rate in vivo. Mol Biochem Parasitol. 1980 Oct;1(6):315–333. doi: 10.1016/0166-6851(80)90050-x. [DOI] [PubMed] [Google Scholar]
- Franklin T. J., Cook J. M. The inhibition of nucleic acid synthesis by mycophenolic acid. Biochem J. 1969 Jul;113(3):515–524. doi: 10.1042/bj1130515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garrett C. E., Coderre J. A., Meek T. D., Garvey E. P., Claman D. M., Beverley S. M., Santi D. V. A bifunctional thymidylate synthetase-dihydrofolate reductase in protozoa. Mol Biochem Parasitol. 1984 Apr;11:257–265. doi: 10.1016/0166-6851(84)90070-7. [DOI] [PubMed] [Google Scholar]
- Geary T. G., Divo A. A., Jensen J. B. An in vitro assay system for the identification of potential antimalarial drugs. J Parasitol. 1983 Jun;69(3):577–583. [PubMed] [Google Scholar]
- Gero A. M., Brown G. V., O'Sullivan W. J. Pyrimidine de novo synthesis during the life cycle of the intraerythrocytic stage of Plasmodium falciparum. J Parasitol. 1984 Aug;70(4):536–541. [PubMed] [Google Scholar]
- Gero A. M., Bugledich E. M., Paterson A. R., Jamieson G. P. Stage-specific alteration of nucleoside membrane permeability and nitrobenzylthioinosine insensitivity in Plasmodium falciparum infected erythrocytes. Mol Biochem Parasitol. 1988 Jan 15;27(2-3):159–170. doi: 10.1016/0166-6851(88)90035-7. [DOI] [PubMed] [Google Scholar]
- Gero A. M., Tetley K., Coombs G. H., Phillips R. S. Dihydroorotate dehydrogenase, orotate phosphoribosyltransferase and orotidine-5'-phosphate decarboxylase in Plasmodium falciparum. Trans R Soc Trop Med Hyg. 1981;75(5):719–720. doi: 10.1016/0035-9203(81)90162-0. [DOI] [PubMed] [Google Scholar]
- HARTMANN K. U., HEIDELBERGER C. Studies on fluorinated pyrimidines. XIII. Inhibition of thymidylate synthetase. J Biol Chem. 1961 Nov;236:3006–3013. [PubMed] [Google Scholar]
- HENDERSON J. F., KHOO K. Y. ON THE MECHANISM OF FEEDBACK INHIBITION OF PURINE BIOSYNTHESIS DE NOVO IN EHRLICH ASCITES TUMOR CELLS IN VITRO. J Biol Chem. 1965 Jul;240:3104–3109. [PubMed] [Google Scholar]
- Hynes J. B., Eason D. E., Garrett C. M., Colvin P. L., Jr Quinazolines as inhibitors of dihydrofolate reductase. 4. Classical analogues of folic and isofolic acids. J Med Chem. 1977 Apr;20(4):588–591. doi: 10.1021/jm00214a030. [DOI] [PubMed] [Google Scholar]
- KAMMEN H. O., HURLBERT R. B. The formation of cytidine nucleotides and RNA cytosine from orotic acid by the Novikoff tumor in vitro. Cancer Res. 1959 Jul;19(6 Pt 1):654–663. [PubMed] [Google Scholar]
- Kelley W. N., Rosenbloom F. M., Henderson J. F., Seegmiller J. E. Xanthine phosphoribosyltransferase in man: relationship to hypoxanthine-guanine phosphoribosyltransferase. Biochem Biophys Res Commun. 1967 Aug 7;28(3):340–345. doi: 10.1016/0006-291x(67)90315-4. [DOI] [PubMed] [Google Scholar]
- Krenitsky T. A., Papaioannou R., Elion G. B. Human hypoxanthine phosphoribosyltransferase. I. Purification, properties, and specificity. J Biol Chem. 1969 Mar 10;244(5):1263–1270. [PubMed] [Google Scholar]
- Lindberg B., Klenow H., Hansen K. Some properties of partially purified mammalian adenosine kinase. J Biol Chem. 1967 Feb 10;242(3):350–356. [PubMed] [Google Scholar]
- MOORE E. C., HURLBERT R. B. Biosynthesis of RNA cytosine and RNA purines: differential inhibition by diazo-oxonorleucine. Cancer Res. 1961 Feb;21:257–261. [PubMed] [Google Scholar]
- McCormick G. J., Canfield C. J., Willet G. P. In vitro antimalarial activity of nucleic acid precursor analogues in the simian malaria Plasmodium knowlesi. Antimicrob Agents Chemother. 1974 Jul;6(1):16–21. doi: 10.1128/aac.6.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller R. L., Adamczyk D. L., Miller W. H., Koszalka G. W., Rideout J. L., Beacham L. M., 3rd, Chao E. Y., Haggerty J. J., Krenitsky T. A., Elion G. B. Adenosine kinase from rabbit liver. II. Substrate and inhibitor specificity. J Biol Chem. 1979 Apr 10;254(7):2346–2352. [PubMed] [Google Scholar]
- Mitsuya H., Popovic M., Yarchoan R., Matsushita S., Gallo R. C., Broder S. Suramin protection of T cells in vitro against infectivity and cytopathic effect of HTLV-III. Science. 1984 Oct 12;226(4671):172–174. doi: 10.1126/science.6091268. [DOI] [PubMed] [Google Scholar]
- Nguyen-Dinh P., Payne D. Pyrimethamine sensitivity in Plasmodium falciparum: determination in vitro by a modified 48-hour test. Bull World Health Organ. 1980;58(6):909–912. [PMC free article] [PubMed] [Google Scholar]
- Niedzwicki J. G., Iltzsch M. H., el Kouni M. H., Cha S. Structure-activity relationship of pyrimidine base analogs as ligands of orotate phosphoribosyltransferase. Biochem Pharmacol. 1984 Aug 1;33(15):2383–2395. doi: 10.1016/0006-2952(84)90710-x. [DOI] [PubMed] [Google Scholar]
- Pasvol G., Wilson R. J., Smalley M. E., Brown J. Separation of viable schizont-infected red cells of Plasmodium falciparum from human blood. Ann Trop Med Parasitol. 1978 Feb;72(1):87–88. doi: 10.1080/00034983.1978.11719283. [DOI] [PubMed] [Google Scholar]
- Paul B., Chen M. F., Paterson A. R. Inhibitors of nucleoside transport. A structure-activity study using human erythrocytes. J Med Chem. 1975 Oct;18(10):968–973. doi: 10.1021/jm00244a003. [DOI] [PubMed] [Google Scholar]
- Peters W. The problem of drug resistance in malaria. Parasitology. 1985 Apr;90(Pt 4):705–715. doi: 10.1017/s003118200005232x. [DOI] [PubMed] [Google Scholar]
- Pfefferkorn E. R., Pfefferkorn L. C. The biochemical basis for resistance to adenine arabinoside in a mutant of Toxoplasma gondii. J Parasitol. 1978 Jun;64(3):486–492. [PubMed] [Google Scholar]
- Queen S. A., Vander Jagt D., Reyes P. Properties and substrate specificity of a purine phosphoribosyltransferase from the human malaria parasite, Plasmodium falciparum. Mol Biochem Parasitol. 1988 Aug;30(2):123–133. doi: 10.1016/0166-6851(88)90105-3. [DOI] [PubMed] [Google Scholar]
- Rathod P. K., Khatri A., Hubbert T., Milhous W. K. Selective activity of 5-fluoroorotic acid against Plasmodium falciparum in vitro. Antimicrob Agents Chemother. 1989 Jul;33(7):1090–1094. doi: 10.1128/aac.33.7.1090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reyes P., Heidelberger C. Fluorinated pyrimidines. XXVI. Mammalian thymidylate synthetase: its mechanism of action and inhibition by fluorinated nucleotides. Mol Pharmacol. 1965 Jul;1(1):14–30. [PubMed] [Google Scholar]
- Reyes P., Rathod P. K., Sanchez D. J., Mrema J. E., Rieckmann K. H., Heidrich H. G. Enzymes of purine and pyrimidine metabolism from the human malaria parasite, Plasmodium falciparum. Mol Biochem Parasitol. 1982 May;5(5):275–290. doi: 10.1016/0166-6851(82)90035-4. [DOI] [PubMed] [Google Scholar]
- Rieckmann K. H. Falciparum malaria: the urgent need for safe and effective drugs. Annu Rev Med. 1983;34:321–335. doi: 10.1146/annurev.me.34.020183.001541. [DOI] [PubMed] [Google Scholar]
- Royer R. E., Deck L. M., Campos N. M., Hunsaker L. A., Vander Jagt D. L. Biologically active derivatives of gossypol: synthesis and antimalarial activities of peri-acylated gossylic nitriles. J Med Chem. 1986 Sep;29(9):1799–1801. doi: 10.1021/jm00159a043. [DOI] [PubMed] [Google Scholar]
- SMITH J. D., MATTHEWS R. E. The metabolism of 8-azapurines. Biochem J. 1957 Jun;66(2):323–333. doi: 10.1042/bj0660323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scanlon K. J., Moroson B. A., Bertino J. R., Hynes J. B. Quinazoline analogues of folic acid as inhibitors of thymidylate synthetase from bacterial and mammalian sources. Mol Pharmacol. 1979 Jul;16(1):261–269. [PubMed] [Google Scholar]
- Schimandle C. M., Sherman I. W. Characterization of adenosine deaminase from the malarial parasite, Plasmodium lophurae, and its host cell, the duckling erythrocyte. Biochem Pharmacol. 1983 Jan 1;32(1):115–122. doi: 10.1016/0006-2952(83)90662-7. [DOI] [PubMed] [Google Scholar]
- Scott H. V., Gero A. M., O'Sullivan W. J. In vitro inhibition of Plasmodium falciparum by pyrazofurin, an inhibitor of pyrimidine biosynthesis de novo. Mol Biochem Parasitol. 1986 Jan;18(1):3–15. doi: 10.1016/0166-6851(86)90045-9. [DOI] [PubMed] [Google Scholar]
- Scott H. V., Rieckmann K. H., O'Sullivan W. J. Synergistic antimalarial activity of dapsone/dihydrofolate reductase inhibitors and the interaction of antifol, antipyrimidine and antipurine combinations against Plasmodium falciparum in vitro. Trans R Soc Trop Med Hyg. 1987;81(5):715–721. doi: 10.1016/0035-9203(87)90004-6. [DOI] [PubMed] [Google Scholar]
- Senft A. W., Crabtree G. W. Purine metabolism in the schistosomes: potential targets for chemotherapy. Pharmacol Ther. 1983;20(3):341–356. doi: 10.1016/0163-7258(83)90031-1. [DOI] [PubMed] [Google Scholar]
- Sherman I. W. Biochemistry of Plasmodium (malarial parasites). Microbiol Rev. 1979 Dec;43(4):453–495. doi: 10.1128/mr.43.4.453-495.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trager W., Jensen J. B. Human malaria parasites in continuous culture. Science. 1976 Aug 20;193(4254):673–675. doi: 10.1126/science.781840. [DOI] [PubMed] [Google Scholar]
- Traut T. W., Jones M. E. Inhibitors of orotate phosphoribosyl-transferase and orotidine-5'-phosphate decarboxylase from mouse Ehrlich ascites cells: a procedure for analyzing the inhibition of a multi-enzyme complex. Biochem Pharmacol. 1977 Dec 1;26(23):2291–2296. doi: 10.1016/0006-2952(77)90293-3. [DOI] [PubMed] [Google Scholar]
- Walter R. D., Königk E. Hypoxanthine-guanine phosphoribosyltransferase and adenine phosphoribosyltransferase from Plasmodium chabaudi, purification and properties. Tropenmed Parasitol. 1974 Jun;25(2):227–235. [PubMed] [Google Scholar]
- Wang C. C., Verham R., Cheng H. W., Rice A., Wang A. L. Differential effects of inhibitors of purine metabolism on two trichomonad species. Biochem Pharmacol. 1984 Apr 15;33(8):1323–1329. doi: 10.1016/0006-2952(84)90187-4. [DOI] [PubMed] [Google Scholar]
- Wyler D. J. Malaria--resurgence, resistance, and research. (First of two parts). N Engl J Med. 1983 Apr 14;308(15):875–878. doi: 10.1056/NEJM198304143081505. [DOI] [PubMed] [Google Scholar]