Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1990 Jul;34(7):1429–1434. doi: 10.1128/aac.34.7.1429

Risk factors for fecal colonization with trimethoprim-resistant and multiresistant Escherichia coli among children in day-care centers in Houston, Texas.

R R Reves 1, M Fong 1, L K Pickering 1, A Bartlett 3rd 1, M Alvarez 1, B E Murray 1
PMCID: PMC175994  PMID: 2201257

Abstract

In a previous study, we found fecal colonization with multiresistant Escherichia coli exhibiting high-level trimethoprim resistance in 19% of diapered children attending six day-care centers in Houston, Tex. To examine the potential risk factors associated with this finding, we conducted cross-sectional studies among 203 children attending 12 day-care centers, 51 children attending a well-child clinic (controls), and 64 medical students. The prevalence of fecal colonization with trimethoprim-resistant E. coli among children attending day-care centers (30%) was higher (P less than 0.001) than among control children (6%) or medical students (8%). The prevalence of colonization among the children attending the 12 centers ranged from 0 to 59% and was correlated with the number of diapered children enrolled (r = 0.73; P less than 0.01). In a case control study among the day-care center children, significant risk factors were an age of less than 12 months and attendance at a center with an enrollment of over 40 diapered children (odds ratios of 2.2 and 3.5, respectively); ethnicity, duration of attendance, and prior antibiotic administration were not associated with colonization. Plasmid analysis of 60 of the day-care center strains revealed 22 profiles, each of which was unique to a given day-care center. Transmission and carriage of trimethoprim-resistant strains for as long as 6 months was documented in one center studied on three occasions. Given the documented transmission of enteric pathogens among diapered children attending day-care centers and their spread into family members, it is likely that day-care centers are an important community reservoir of plasmid-associated antibiotic-resistant E. coli.

Full text

PDF
1429

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alon U., Davidai G., Berant M., Merzbach D. Five-year survey of changing patterns of susceptibility of bacterial uropathogens to trimethoprim-sulfamethoxazole and other antimicrobial agents. Antimicrob Agents Chemother. 1987 Jan;31(1):126–128. doi: 10.1128/aac.31.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bartlett A. V., 3rd, Reves R. R., Pickering L. K. Rotavirus in infant-toddler day care centers: epidemiology relevant to disease control strategies. J Pediatr. 1988 Sep;113(3):435–441. doi: 10.1016/S0022-3476(88)80624-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Guerrant R. L., Wood S. J., Krongaard L., Reid R. A., Hodge R. H. Resistance among fecal flora of patients taking sulfamethoxazole-trimethoprim or trimethoprim alone. Antimicrob Agents Chemother. 1981 Jan;19(1):33–38. doi: 10.1128/aac.19.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kado C. I., Liu S. T. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 1981 Mar;145(3):1365–1373. doi: 10.1128/jb.145.3.1365-1373.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kauffman C. A., Liepman M. K., Bergman A. G., Mioduszewski J. Trimethoprim/sulfamethoxazole prophylaxis in neutropenic patients. Reduction of infections and effect on bacterial and fungal flora. Am J Med. 1983 Apr;74(4):599–607. doi: 10.1016/0002-9343(83)91017-3. [DOI] [PubMed] [Google Scholar]
  6. Korzeniowski O. M. Effects of antibiotics on the mammalian immune system. Infect Dis Clin North Am. 1989 Sep;3(3):469–478. [PubMed] [Google Scholar]
  7. Levy S. B., Marshall B., Schluederberg S., Rowse D., Davis J. High frequency of antimicrobial resistance in human fecal flora. Antimicrob Agents Chemother. 1988 Dec;32(12):1801–1806. doi: 10.1128/aac.32.12.1801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mayer K. H., Fling M. E., Hopkins J. D., O'Brien T. F. Trimethoprim resistance in multiple genera of Enterobacteriaceae at a U.S. hospital: spread of the type II dihydrofolate reductase gene by a single plasmid. J Infect Dis. 1985 May;151(5):783–789. doi: 10.1093/infdis/151.5.783. [DOI] [PubMed] [Google Scholar]
  9. Murray B. E., Alvarado T., Kim K. H., Vorachit M., Jayanetra P., Levine M. M., Prenzel I., Fling M., Elwell L., McCracken G. H. Increasing resistance to trimethoprim-sulfamethoxazole among isolates of Escherichia coli in developing countries. J Infect Dis. 1985 Dec;152(6):1107–1113. doi: 10.1093/infdis/152.6.1107. [DOI] [PubMed] [Google Scholar]
  10. Murray B. E., Rensimer E. R., DuPont H. L. Emergence of high-level trimethoprim resistance in fecal Escherichia coli during oral administration of trimethoprim or trimethoprim--sulfamethoxazole. N Engl J Med. 1982 Jan 21;306(3):130–135. doi: 10.1056/NEJM198201213060302. [DOI] [PubMed] [Google Scholar]
  11. Murray B. E., Rensimer E. R. Transfer of trimethoprim resistance from fecal Escherichia coli isolated during a prophylaxis study in Mexico. J Infect Dis. 1983 Apr;147(4):724–728. doi: 10.1093/infdis/147.4.724. [DOI] [PubMed] [Google Scholar]
  12. Murray B. E. Resistance of Shigella, Salmonella, and other selected enteric pathogens to antimicrobial agents. Rev Infect Dis. 1986 May-Jun;8 (Suppl 2):S172–S181. doi: 10.1093/clinids/8.supplement_2.s172. [DOI] [PubMed] [Google Scholar]
  13. Pancoast S. J., Hyams D. M., Neu H. C. Effect of trimethoprim and trimethoprim-sulfamethoxazole on development of drug-resistant vaginal and fecal floras. Antimicrob Agents Chemother. 1980 Feb;17(2):263–268. doi: 10.1128/aac.17.2.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Phillips I., Eykyn S., King A., Gransden W. R., Rowe B., Frost J. A., Gross R. J. Epidemic multiresistant Escherichia coli infection in West Lambeth Health District. Lancet. 1988 May 7;1(8593):1038–1041. doi: 10.1016/s0140-6736(88)91853-3. [DOI] [PubMed] [Google Scholar]
  15. Reves R. R., Murray B. E., Pickering L. K., Prado D., Maddock M., Bartlett A. V., 3rd Children with trimethoprim- and ampicillin-resistant fecal Escherichia coli in day care centers. J Infect Dis. 1987 Nov;156(5):758–762. doi: 10.1093/infdis/156.5.758. [DOI] [PubMed] [Google Scholar]
  16. Rowe B., Threlfall E. J. Drug resistance in gram-negative aerobic bacilli. Br Med Bull. 1984 Jan;40(1):68–76. doi: 10.1093/oxfordjournals.bmb.a071950. [DOI] [PubMed] [Google Scholar]
  17. Stamey T. A., Condy M., Mihara G. Prophylactic efficacy of nitrofurantoin macrocrystals and trimethoprim-sulfamethoxazole in urinary infections. Biologic effects on the vaginal and rectal flora. N Engl J Med. 1977 Apr 7;296(14):780–783. doi: 10.1056/NEJM197704072961403. [DOI] [PubMed] [Google Scholar]
  18. Stamm W. E., Counts G. W., Wagner K. F., Martin D., Gregory D., McKevitt M., Turck M., Holmes K. K. Antimicrobial prophylaxis of recurrent urinary tract infections: a double-blind, placebo-controlled trial. Ann Intern Med. 1980 Jun;92(6):770–775. doi: 10.7326/0003-4819-92-6-770. [DOI] [PubMed] [Google Scholar]
  19. Wilson J. M., Guiney D. G. Failure of oral trimethoprim-sulfamethoxazole prophylaxis in acute leukemia: isolation of resistant plasmids from strains of Enterobacteriaceae causing bacteremia. N Engl J Med. 1982 Jan 7;306(1):16–20. doi: 10.1056/NEJM198201073060105. [DOI] [PubMed] [Google Scholar]
  20. Young H. K., Jesudason M. V., Koshi G., Amyes S. G. Trimethoprim resistance amongst urinary pathogens in south India. J Antimicrob Chemother. 1986 May;17(5):615–621. doi: 10.1093/jac/17.5.615. [DOI] [PubMed] [Google Scholar]
  21. Zylke J. W. Day-care quality and quantity become challenges for parents, politicians, and medical researchers. JAMA. 1988 Dec 9;260(22):3247–3249. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES