Abstract
BACKGROUND—Ulcerative colitis associated colorectal cancer (UCACRC) has several distinctive clinicopathological and genetic features which differ from sporadic colorectal cancer (SCRC). Hypermethylation of the E-cadherin gene (CDH1) has not been described previously in colorectal cancer. AIMS—A panel of SCRC and UCACRC were investigated for mutations in CDH1, and for hypermethylation of the promoter region of CDH1. SUBJECTS AND METHODS—DNA was available from 14 patients with UCACRC and from 14 with SCRC. All exons of CDH1 were amplified with the polymerase chain reaction (PCR) and screened using single strand conformational polymorphism and direct sequencing. Hypermethylation of the CDH1 promoter region was determined by methylation specific PCR following bisulphite modification, and compared with E-cadherin protein expression from a previous immunohistochemistry study. RESULTS—Thirteen of 28 cancers (46%) were hypermethylated in the CDH1 promoter region—eight cancers (57%) in the UCACRC group and five cancers (36%) in the SCRC group (NS)—and this correlated with reduced E-cadherin expression (p<0.05). There was a trend for methylation to be associated with a more advanced stage of cancer although this did not reach statistical significance. There were no mutations in CDH1 in either group although there were several polymorphisms. CONCLUSION—We have demonstrated hypermethylation of the promoter region in CDH1 in 46% of colorectal cancers studied. There was no difference between the UCACRC and SCRC groups. Just as there are specific differences in the genetic changes between UCACRC and SCRC, there is also likely to be a large degree of overlap among the genetic pathways of these cancers. Keywords: hypermethylation; promoter region; E-cadherin (CDH1); ulcerative colitis; colorectal cancer
Full Text
The Full Text of this article is available as a PDF (316.9 KB).
Figure 1 .
Silver staining of methylation specific polymerase chain reaction (PCR) products following electrophoresis on an acrylamide gel. Sample pairs 1-6 are from ulcerative colitis associated colorectal cancer (UCACRC), and 7-11 are from sporadic colorectal cancer (SCRC). E-cadherin protein expression is shown as present (+; grade 2/3) or absent (−; grade 0/1). Primer sets used for PCR amplification are designated as unmethylated (U) or methylated (M), and a PCR product is shown as present (+) or absent (−). A PCR product is seen using unmethylated primers in the unmethylated breast cancer cell line, MDA-MA-468, and with methylated primers in the methylated breast cancer cell line, MDA-MA-435 (C=control). Hypermethylation of the promoter region of CDH1 correlated significantly with reduced E-cadherin immunohistochemical expression (Fisher's exact test, p=0.036). The methylated cancers that expressed E-cadherin protein may have been hemimethylated (methylation of one allele) and were therefore still able to express E-cadherin protein.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beck N. E., Tomlinson I. P., Homfray T., Frayling I., Hodgson S. V., Harocopos C., Bodmer W. F. Use of SSCP analysis to identify germline mutations in HNPCC families fulfilling the Amsterdam criteria. Hum Genet. 1997 Feb;99(2):219–224. doi: 10.1007/s004390050343. [DOI] [PubMed] [Google Scholar]
- Becker K. F., Atkinson M. J., Reich U., Becker I., Nekarda H., Siewert J. R., Höfler H. E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res. 1994 Jul 15;54(14):3845–3852. [PubMed] [Google Scholar]
- Berx G., Cleton-Jansen A. M., Nollet F., de Leeuw W. J., van de Vijver M., Cornelisse C., van Roy F. E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. EMBO J. 1995 Dec 15;14(24):6107–6115. doi: 10.1002/j.1460-2075.1995.tb00301.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bodmer W. The somatic evolution of cancer. The Harveian Oration of 1996. J R Coll Physicians Lond. 1997 Jan-Feb;31(1):82–89. [PMC free article] [PubMed] [Google Scholar]
- Cairns J. Mutation selection and the natural history of cancer. Nature. 1975 May 15;255(5505):197–200. doi: 10.1038/255197a0. [DOI] [PubMed] [Google Scholar]
- Chaubert P., Benhattar J., Saraga E., Costa J. K-ras mutations and p53 alterations in neoplastic and nonneoplastic lesions associated with longstanding ulcerative colitis. Am J Pathol. 1994 Apr;144(4):767–775. [PMC free article] [PubMed] [Google Scholar]
- Connell W. R., Talbot I. C., Harpaz N., Britto N., Wilkinson K. H., Kamm M. A., Lennard-Jones J. E. Clinicopathological characteristics of colorectal carcinoma complicating ulcerative colitis. Gut. 1994 Oct;35(10):1419–1423. doi: 10.1136/gut.35.10.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Efstathiou J. A., Liu D., Wheeler J. M., Kim H. C., Beck N. E., Ilyas M., Karayiannakis A. J., Mortensen N. J., Kmiot W., Playford R. J. Mutated epithelial cadherin is associated with increased tumorigenicity and loss of adhesion and of responsiveness to the motogenic trefoil factor 2 in colon carcinoma cells. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2316–2321. doi: 10.1073/pnas.96.5.2316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fearon E. R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990 Jun 1;61(5):759–767. doi: 10.1016/0092-8674(90)90186-i. [DOI] [PubMed] [Google Scholar]
- Fogt F., Vortmeyer A. O., Goldman H., Giordano T. J., Merino M. J., Zhuang Z. Comparison of genetic alterations in colonic adenoma and ulcerative colitis-associated dysplasia and carcinoma. Hum Pathol. 1998 Feb;29(2):131–136. doi: 10.1016/s0046-8177(98)90222-2. [DOI] [PubMed] [Google Scholar]
- Graff J. R., Greenberg V. E., Herman J. G., Westra W. H., Boghaert E. R., Ain K. B., Saji M., Zeiger M. A., Zimmer S. G., Baylin S. B. Distinct patterns of E-cadherin CpG island methylation in papillary, follicular, Hurthle's cell, and poorly differentiated human thyroid carcinoma. Cancer Res. 1998 May 15;58(10):2063–2066. [PubMed] [Google Scholar]
- Graff J. R., Herman J. G., Lapidus R. G., Chopra H., Xu R., Jarrard D. F., Isaacs W. B., Pitha P. M., Davidson N. E., Baylin S. B. E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res. 1995 Nov 15;55(22):5195–5199. [PubMed] [Google Scholar]
- Gumbiner B. M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell. 1996 Feb 9;84(3):345–357. doi: 10.1016/s0092-8674(00)81279-9. [DOI] [PubMed] [Google Scholar]
- Gumbiner B. M., McCrea P. D. Catenins as mediators of the cytoplasmic functions of cadherins. J Cell Sci Suppl. 1993;17:155–158. doi: 10.1242/jcs.1993.supplement_17.22. [DOI] [PubMed] [Google Scholar]
- Herman J. G., Graff J. R., Myöhänen S., Nelkin B. D., Baylin S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9821–9826. doi: 10.1073/pnas.93.18.9821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herman J. G., Merlo A., Mao L., Lapidus R. G., Issa J. P., Davidson N. E., Sidransky D., Baylin S. B. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995 Oct 15;55(20):4525–4530. [PubMed] [Google Scholar]
- Herman J. G., Umar A., Polyak K., Graff J. R., Ahuja N., Issa J. P., Markowitz S., Willson J. K., Hamilton S. R., Kinzler K. W. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6870–6875. doi: 10.1073/pnas.95.12.6870. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hiraguri S., Godfrey T., Nakamura H., Graff J., Collins C., Shayesteh L., Doggett N., Johnson K., Wheelock M., Herman J. Mechanisms of inactivation of E-cadherin in breast cancer cell lines. Cancer Res. 1998 May 1;58(9):1972–1977. [PubMed] [Google Scholar]
- Hoang J. M., Cottu P. H., Thuille B., Salmon R. J., Thomas G., Hamelin R. BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines. Cancer Res. 1997 Jan 15;57(2):300–303. [PubMed] [Google Scholar]
- Ilyas M., Tomlinson I. P., Hanby A. M., Yao T., Bodmer W. F., Talbot I. C. Bcl-2 expression in colorectal tumors: evidence of different pathways in sporadic and ulcerative-colitis-associated carcinomas. Am J Pathol. 1996 Nov;149(5):1719–1726. [PMC free article] [PubMed] [Google Scholar]
- Ilyas M., Tomlinson I. P., Hanby A., Talbot I. C., Bodmer W. F. Allele loss, replication errors and loss of expression of E-cadherin in colorectal cancers. Gut. 1997 May;40(5):654–659. doi: 10.1136/gut.40.5.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Itzkowitz S. H. Inflammatory bowel disease and cancer. Gastroenterol Clin North Am. 1997 Mar;26(1):129–139. doi: 10.1016/s0889-8553(05)70287-9. [DOI] [PubMed] [Google Scholar]
- Kanai Y., Ushijima S., Hui A. M., Ochiai A., Tsuda H., Sakamoto M., Hirohashi S. The E-cadherin gene is silenced by CpG methylation in human hepatocellular carcinomas. Int J Cancer. 1997 May 2;71(3):355–359. doi: 10.1002/(sici)1097-0215(19970502)71:3<355::aid-ijc8>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
- Kane M. F., Loda M., Gaida G. M., Lipman J., Mishra R., Goldman H., Jessup J. M., Kolodner R. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997 Mar 1;57(5):808–811. [PubMed] [Google Scholar]
- Karayiannakis A. J., Syrigos K. N., Efstathiou J., Valizadeh A., Noda M., Playford R. J., Kmiot W., Pignatelli M. Expression of catenins and E-cadherin during epithelial restitution in inflammatory bowel disease. J Pathol. 1998 Aug;185(4):413–418. doi: 10.1002/(SICI)1096-9896(199808)185:4<413::AID-PATH125>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
- Kinsella A. R., Lepts G. C., Hill C. L., Jones M. Reduced E-cadherin expression correlates with increased invasiveness in colorectal carcinoma cell lines. Clin Exp Metastasis. 1994 Jul;12(4):335–342. doi: 10.1007/BF01753841. [DOI] [PubMed] [Google Scholar]
- Levin B. Inflammatory bowel disease and colon cancer. Cancer. 1992 Sep 1;70(5 Suppl):1313–1316. doi: 10.1002/1097-0142(19920901)70:3+<1313::aid-cncr2820701518>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
- Merlo A., Herman J. G., Mao L., Lee D. J., Gabrielson E., Burger P. C., Baylin S. B., Sidransky D. 5' CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med. 1995 Jul;1(7):686–692. doi: 10.1038/nm0795-686. [DOI] [PubMed] [Google Scholar]
- Reynolds A. B., Daniel J., McCrea P. D., Wheelock M. J., Wu J., Zhang Z. Identification of a new catenin: the tyrosine kinase substrate p120cas associates with E-cadherin complexes. Mol Cell Biol. 1994 Dec;14(12):8333–8342. doi: 10.1128/mcb.14.12.8333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubinfeld B., Souza B., Albert I., Müller O., Chamberlain S. H., Masiarz F. R., Munemitsu S., Polakis P. Association of the APC gene product with beta-catenin. Science. 1993 Dec 10;262(5140):1731–1734. doi: 10.1126/science.8259518. [DOI] [PubMed] [Google Scholar]
- Tarmin L., Yin J., Harpaz N., Kozam M., Noordzij J., Antonio L. B., Jiang H. Y., Chan O., Cymes K., Meltzer S. J. Adenomatous polyposis coli gene mutations in ulcerative colitis-associated dysplasias and cancers versus sporadic colon neoplasms. Cancer Res. 1995 May 15;55(10):2035–2038. [PubMed] [Google Scholar]
- Wheeler J. M., Beck N. E., Kim H. C., Tomlinson I. P., Mortensen N. J., Bodmer W. F. Mechanisms of inactivation of mismatch repair genes in human colorectal cancer cell lines: the predominant role of hMLH1. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10296–10301. doi: 10.1073/pnas.96.18.10296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshiura K., Kanai Y., Ochiai A., Shimoyama Y., Sugimura T., Hirohashi S. Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7416–7419. doi: 10.1073/pnas.92.16.7416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou X. P., Hoang J. M., Cottu P., Thomas G., Hamelin R. Allelic profiles of mononucleotide repeat microsatellites in control individuals and in colorectal tumors with and without replication errors. Oncogene. 1997 Oct 2;15(14):1713–1718. doi: 10.1038/sj.onc.1201337. [DOI] [PubMed] [Google Scholar]