Skip to main content
Heart logoLink to Heart
. 1999 Oct;82(4):432–437. doi: 10.1136/hrt.82.4.432

Concordance between dobutamine Doppler tissue imaging echocardiography and rest reinjection thallium-201 tomography in dysfunctional hypoperfused myocardium

F Larrazet 1, D Pellerin 1, D Daou 1, S Witchitz 1, C Fournier 1, A Prigent 1, C Veyrat 1
PMCID: PMC1760277  PMID: 10490555

Abstract

OBJECTIVE—To evaluate the efficiency of the new technique colour Doppler tissue imaging (DTI) by studying the concordance between dobutamine DTI, standard grey scale echocardiography (SE), and rest-reinjection TI-201 tomography (TI) in dysfunctional myocardium.
PATIENTS—23 patients with chronic wall motion abnormalities and proven coronary artery disease (> 70% diameter stenosis of at least one major coronary artery at angiogram).
METHODS—The contractile reserve and the resting perfusion characteristics of dysfunctional myocardial segments were assessed with low dose dobutamine SE and/or DTI (2.5 up to 20 γ/kg/min) and TI on a semiquantitative basis. The DTI or SE data were separately compared with TI, on the basis of a 13 segment ventricular model. The resulting score of combined DTI and SE was also compared with TI. Finally the results obtained from DTI were compared with SE.
RESULTS—A total of 142 severely hypokinetic or akinetic segments were visualised. The viability study was feasible in 127 (89%) and 121 (85%) segments with DTI and SE, respectively. TI detected viability more frequently than DTI (84 v 61, p < 0.001) and SE (80 v 50, p < 0.001). However, as many viable segments were detected with combined DTI and SE as with TI (78 v 84, NS). The κ values between TI and SE, DTI or combined SE and DTI were 0.38, 0.45, and 0.57, respectively, and increased to 0.52 and 0.76, respectively, for SE and DTI versus TI when mid-anterior and mid-inferior segments only were considered. The κ value between SE and DTI was 0.34.
CONCLUSIONS—DTI is a helpful adjunct to SE, when using low dose dobutamine. This combination revealed as many viable segments as TI and showed a better agreement than DTI or SE alone for the assessment of myocardial viable segments evidenced by TI.


Keywords: colour Doppler tissue imaging; hibernating myocardium; thallium 201 single photon emission computed tomography; stress echocardiography

Full Text

The Full Text of this article is available as a PDF (135.8 KB).

Figure 1  .

Figure 1  

Viability assessment of the septoapical and lateroapical regions of the left ventricle in a patient with a severe left anterior descending coronary artery stenosis. Top: at rest, the septolateroapical area is not encoded (arrows) in early (left) and late (right) systole. Bottom: at the same periods of the cardiac cycle, wall encoding appears after low dose dobutamine.

Figure 2  .

Figure 2  

Ischaemia/viability assessment of the septoapical portion of the left ventricle with thallium-201 tomography in the same patient as fig 1. The images show stress on the left and redistribution on the right with the septoapical defect recovery.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afridi I., Kleiman N. S., Raizner A. E., Zoghbi W. A. Dobutamine echocardiography in myocardial hibernation. Optimal dose and accuracy in predicting recovery of ventricular function after coronary angioplasty. Circulation. 1995 Feb 1;91(3):663–670. doi: 10.1161/01.cir.91.3.663. [DOI] [PubMed] [Google Scholar]
  2. Afridi I., Qureshi U., Kopelen H. A., Winters W. L., Zoghbi W. A. Serial changes in response of hibernating myocardium to inotropic stimulation after revascularization: a dobutamine echocardiographic study. J Am Coll Cardiol. 1997 Nov 1;30(5):1233–1240. doi: 10.1016/s0735-1097(97)00308-2. [DOI] [PubMed] [Google Scholar]
  3. Arnese M., Cornel J. H., Salustri A., Maat A., Elhendy A., Reijs A. E., Ten Cate F. J., Keane D., Balk A. H., Roelandt J. R. Prediction of improvement of regional left ventricular function after surgical revascularization. A comparison of low-dose dobutamine echocardiography with 201Tl single-photon emission computed tomography. Circulation. 1995 Jun 1;91(11):2748–2752. doi: 10.1161/01.cir.91.11.2748. [DOI] [PubMed] [Google Scholar]
  4. Berman D. S., Kiat H., Friedman J. D., Wang F. P., van Train K., Matzer L., Maddahi J., Germano G. Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: a clinical validation study. J Am Coll Cardiol. 1993 Nov 1;22(5):1455–1464. doi: 10.1016/0735-1097(93)90557-h. [DOI] [PubMed] [Google Scholar]
  5. Camici P. G., Wijns W., Borgers M., De Silva R., Ferrari R., Knuuti J., Lammertsma A. A., Liedtke A. J., Paternostro G., Vatner S. F. Pathophysiological mechanisms of chronic reversible left ventricular dysfunction due to coronary artery disease (hibernating myocardium). Circulation. 1997 Nov 4;96(9):3205–3214. doi: 10.1161/01.cir.96.9.3205. [DOI] [PubMed] [Google Scholar]
  6. Charney R., Schwinger M. E., Chun J., Cohen M. V., Nanna M., Menegus M. A., Wexler J., Franco H. S., Greenberg M. A. Dobutamine echocardiography and resting-redistribution thallium-201 scintigraphy predicts recovery of hibernating myocardium after coronary revascularization. Am Heart J. 1994 Nov;128(5):864–869. doi: 10.1016/0002-8703(94)90581-9. [DOI] [PubMed] [Google Scholar]
  7. Cigarroa C. G., deFilippi C. R., Brickner M. E., Alvarez L. G., Wait M. A., Grayburn P. A. Dobutamine stress echocardiography identifies hibernating myocardium and predicts recovery of left ventricular function after coronary revascularization. Circulation. 1993 Aug;88(2):430–436. doi: 10.1161/01.cir.88.2.430. [DOI] [PubMed] [Google Scholar]
  8. Dilsizian V., Perrone-Filardi P., Arrighi J. A., Bacharach S. L., Quyyumi A. A., Freedman N. M., Bonow R. O. Concordance and discordance between stress-redistribution-reinjection and rest-redistribution thallium imaging for assessing viable myocardium. Comparison with metabolic activity by positron emission tomography. Circulation. 1993 Sep;88(3):941–952. doi: 10.1161/01.cir.88.3.941. [DOI] [PubMed] [Google Scholar]
  9. Donovan C. L., Armstrong W. F., Bach D. S. Quantitative Doppler tissue imaging of the left ventricular myocardium: validation in normal subjects. Am Heart J. 1995 Jul;130(1):100–104. doi: 10.1016/0002-8703(95)90242-2. [DOI] [PubMed] [Google Scholar]
  10. Garcia M. J., Rodriguez L., Ares M., Griffin B. P., Klein A. L., Stewart W. J., Thomas J. D. Myocardial wall velocity assessment by pulsed Doppler tissue imaging: characteristic findings in normal subjects. Am Heart J. 1996 Sep;132(3):648–656. doi: 10.1016/s0002-8703(96)90251-3. [DOI] [PubMed] [Google Scholar]
  11. Gerber B. L., Vanoverschelde J. L., Bol A., Michel C., Labar D., Wijns W., Melin J. A. Myocardial blood flow, glucose uptake, and recruitment of inotropic reserve in chronic left ventricular ischemic dysfunction. Implications for the pathophysiology of chronic myocardial hibernation. Circulation. 1996 Aug 15;94(4):651–659. doi: 10.1161/01.cir.94.4.651. [DOI] [PubMed] [Google Scholar]
  12. Gorcsan J., 3rd, Strum D. P., Mandarino W. A., Gulati V. K., Pinsky M. R. Quantitative assessment of alterations in regional left ventricular contractility with color-coded tissue Doppler echocardiography. Comparison with sonomicrometry and pressure-volume relations. Circulation. 1997 May 20;95(10):2423–2433. doi: 10.1161/01.cir.95.10.2423. [DOI] [PubMed] [Google Scholar]
  13. Iskandrian A. S., Hakki A. H., Kane S. A., Goel I. P., Mundth E. D., Hakki A. H., Segal B. L. Rest and redistribution thallium-201 myocardial scintigraphy to predict improvement in left ventricular function after coronary arterial bypass grafting. Am J Cardiol. 1983 May 1;51(8):1312–1316. doi: 10.1016/0002-9149(83)90304-1. [DOI] [PubMed] [Google Scholar]
  14. Katz W. E., Gulati V. K., Mahler C. M., Gorcsan J., 3rd Quantitative evaluation of the segmental left ventricular response to dobutamine stress by tissue Doppler echocardiography. Am J Cardiol. 1997 Apr 15;79(8):1036–1042. doi: 10.1016/s0002-9149(97)00043-x. [DOI] [PubMed] [Google Scholar]
  15. La Canna G., Alfieri O., Giubbini R., Gargano M., Ferrari R., Visioli O. Echocardiography during infusion of dobutamine for identification of reversibly dysfunction in patients with chronic coronary artery disease. J Am Coll Cardiol. 1994 Mar 1;23(3):617–626. doi: 10.1016/0735-1097(94)90745-5. [DOI] [PubMed] [Google Scholar]
  16. Marzullo P., Parodi O., Reisenhofer B., Sambuceti G., Picano E., Distante A., Gimelli A., L'Abbate A. Value of rest thallium-201/technetium-99m sestamibi scans and dobutamine echocardiography for detecting myocardial viability. Am J Cardiol. 1993 Jan 15;71(2):166–172. doi: 10.1016/0002-9149(93)90733-s. [DOI] [PubMed] [Google Scholar]
  17. McDicken W. N., Sutherland G. R., Moran C. M., Gordon L. N. Colour Doppler velocity imaging of the myocardium. Ultrasound Med Biol. 1992;18(6-7):651–654. doi: 10.1016/0301-5629(92)90080-t. [DOI] [PubMed] [Google Scholar]
  18. Miyatake K., Yamagishi M., Tanaka N., Uematsu M., Yamazaki N., Mine Y., Sano A., Hirama M. New method for evaluating left ventricular wall motion by color-coded tissue Doppler imaging: in vitro and in vivo studies. J Am Coll Cardiol. 1995 Mar 1;25(3):717–724. doi: 10.1016/0735-1097(94)00421-L. [DOI] [PubMed] [Google Scholar]
  19. Nagueh S. F., Vaduganathan P., Ali N., Blaustein A., Verani M. S., Winters W. L., Jr, Zoghbi W. A. Identification of hibernating myocardium: comparative accuracy of myocardial contrast echocardiography, rest-redistribution thallium-201 tomography and dobutamine echocardiography. J Am Coll Cardiol. 1997 Apr;29(5):985–993. doi: 10.1016/s0735-1097(97)00001-6. [DOI] [PubMed] [Google Scholar]
  20. Pagano D., Bonser R. S., Townend J. N., Ordoubadi F., Lorenzoni R., Camici P. G. Predictive value of dobutamine echocardiography and positron emission tomography in identifying hibernating myocardium in patients with postischaemic heart failure. Heart. 1998 Mar;79(3):281–288. doi: 10.1136/hrt.79.3.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Palka P., Lange A., Fleming A. D., Donnelly J. E., Dutka D. P., Starkey I. R., Shaw T. R., Sutherland G. R., Fox K. A. Differences in myocardial velocity gradient measured throughout the cardiac cycle in patients with hypertrophic cardiomyopathy, athletes and patients with left ventricular hypertrophy due to hypertension. J Am Coll Cardiol. 1997 Sep;30(3):760–768. doi: 10.1016/s0735-1097(97)00231-3. [DOI] [PubMed] [Google Scholar]
  22. Pellerin D., Cohen L., Larrazet F., Pajany F., Witchitz S., Veyrat C. Preejectional left ventricular wall motion in normal subjects using Doppler tissue imaging and correlation with ejection fraction. Am J Cardiol. 1997 Sep 1;80(5):601–607. doi: 10.1016/s0002-9149(97)00429-3. [DOI] [PubMed] [Google Scholar]
  23. Piérard L. A., De Landsheere C. M., Berthe C., Rigo P., Kulbertus H. E. Identification of viable myocardium by echocardiography during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: comparison with positron emission tomography. J Am Coll Cardiol. 1990 Apr;15(5):1021–1031. doi: 10.1016/0735-1097(90)90236-i. [DOI] [PubMed] [Google Scholar]
  24. Qureshi U., Nagueh S. F., Afridi I., Vaduganathan P., Blaustein A., Verani M. S., Winters W. L., Jr, Zoghbi W. A. Dobutamine echocardiography and quantitative rest-redistribution 201Tl tomography in myocardial hibernation. Relation of contractile reserve to 201Tl uptake and comparative prediction of recovery of function. Circulation. 1997 Feb 4;95(3):626–635. doi: 10.1161/01.cir.95.3.626. [DOI] [PubMed] [Google Scholar]
  25. Ragosta M., Beller G. A., Watson D. D., Kaul S., Gimple L. W. Quantitative planar rest-redistribution 201Tl imaging in detection of myocardial viability and prediction of improvement in left ventricular function after coronary bypass surgery in patients with severely depressed left ventricular function. Circulation. 1993 May;87(5):1630–1641. doi: 10.1161/01.cir.87.5.1630. [DOI] [PubMed] [Google Scholar]
  26. Sutherland G. R., Stewart M. J., Groundstroem K. W., Moran C. M., Fleming A., Guell-Peris F. J., Riemersma R. A., Fenn L. N., Fox K. A., McDicken W. N. Color Doppler myocardial imaging: a new technique for the assessment of myocardial function. J Am Soc Echocardiogr. 1994 Sep-Oct;7(5):441–458. doi: 10.1016/s0894-7317(14)80001-1. [DOI] [PubMed] [Google Scholar]
  27. Tsutsui H., Uematsu M., Shimizu H., Yamagishi M., Tanaka N., Matsuda H., Miyatake K. Comparative usefulness of myocardial velocity gradient in detecting ischemic myocardium by a dobutamine challenge. J Am Coll Cardiol. 1998 Jan;31(1):89–93. doi: 10.1016/s0735-1097(97)00430-0. [DOI] [PubMed] [Google Scholar]
  28. Uematsu M., Miyatake K., Tanaka N., Matsuda H., Sano A., Yamazaki N., Hirama M., Yamagishi M. Myocardial velocity gradient as a new indicator of regional left ventricular contraction: detection by a two-dimensional tissue Doppler imaging technique. J Am Coll Cardiol. 1995 Jul;26(1):217–223. doi: 10.1016/0735-1097(95)00158-v. [DOI] [PubMed] [Google Scholar]
  29. Vanoverschelde J. L., Gerber B., Pasquet A., Melin J. A. Nuclear and echocardiographic imaging for prediction of reversible left ventricular ischemic dysfunction after coronary revascularization: current status and future directions. J Cardiovasc Pharmacol. 1996;28 (Suppl 1):S27–S36. doi: 10.1097/00005344-199600003-00005. [DOI] [PubMed] [Google Scholar]
  30. Wijns W., Vatner S. F., Camici P. G. Hibernating myocardium. N Engl J Med. 1998 Jul 16;339(3):173–181. doi: 10.1056/NEJM199807163390307. [DOI] [PubMed] [Google Scholar]

Articles from Heart are provided here courtesy of BMJ Publishing Group

RESOURCES