Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Feb;65(2):488–494. doi: 10.1128/iai.65.2.488-494.1997

Biochemical comparison of the Cu,Zn superoxide dismutases of Cryptococcus neoformans var. neoformans and Cryptococcus neoformans var. gattii.

A J Hamilton 1, M D Holdom 1
PMCID: PMC176085  PMID: 9009302

Abstract

Cu,Zn superoxide dismutases (SODs) have been purified to homogeneity from the two varieties of Cryptococcus neoformans, C. neoformans var. neoformans and var. gattii. The N-terminal amino acid sequences of the two enzymes were similar, though not identical, and demonstrated homology with Cu,Zn SODs from other organisms. SOD activity was present in supernatants from stationary-phase cultures of isolates of C. neoformans var. neoformans and was also present from the mid-log phase onwards in cultures of an acapsular mutant of C. neoformans var. neoformans. SOD activity was practically undetectable in culture supernatants from isolates of C. neoformans var. gattii. The C. neoformans var. neoformans SOD had a reduced relative molecular mass of 19 kDa, and in its nonreduced form the enzyme was present as a 125-kDa species. Isoelectric focusing indicated that four species with pIs of 5.9, 6.15, 6.35, and 6.6 were present. The equivalent reduced molecular mass of the C. neoformans var. gattii enzyme was 19 kDa, with a single species present under nonreducing conditions (relative molecular mass of 145 kDa) with a pI of 7.5. The activities of the enzymes from both varieties were inhibited by KCN; however, the copper chelator diethyldithiocarbamate was inhibitory only against the C. neoformans var. gattii enzyme, as was sodium azide. The C. neoformans var. neoformans SOD was not affected by preincubation for 1 h at 70 degrees C, and it also retained most of its activity when incubated at 37 degrees C relative to its activity when incubated at 20 degrees C, in contrast to the C. neoformans var. gattii enzyme. The pronounced differences in the physical and biochemical characteristics of the Cu,Zn SODs from the two Cryptococcus varieties complement recent reports illustrating the biochemical and genetic differences between C. neoformans var. neoformans and C. neoformans var. gattii, and the successful purification of the two enzymes comprises the first step in determining what role, if any, the cryptococcal Cu,Zn SODs might have in protection against externally generated superoxide.

Full Text

The Full Text of this article is available as a PDF (230.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276–287. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
  2. Bhattacharjee A. K., Bennett J. E., Glaudemans C. P. Capsular polysaccharides of Cryptococcus neoformans. Rev Infect Dis. 1984 Sep-Oct;6(5):619–624. doi: 10.1093/clinids/6.5.619. [DOI] [PubMed] [Google Scholar]
  3. Brandt M. E., Hutwagner L. C., Kuykendall R. J., Pinner R. W. Comparison of multilocus enzyme electrophoresis and random amplified polymorphic DNA analysis for molecular subtyping of Cryptococcus neoformans. The Cryplococcal Disease Active Surveillance Group. J Clin Microbiol. 1995 Jul;33(7):1890–1895. doi: 10.1128/jcm.33.7.1890-1895.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carlsson L. M., Jonsson J., Edlund T., Marklund S. L. Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6264–6268. doi: 10.1073/pnas.92.14.6264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cherniak R. Soluble polysaccharides of Cryptococcus neoformans. Curr Top Med Mycol. 1988;2:40–54. doi: 10.1007/978-1-4612-3730-3_2. [DOI] [PubMed] [Google Scholar]
  6. EMMONS C. W. Saprophytic sources of Cryptococcus neoformans associated with the pigeon (Columba livia). Am J Hyg. 1955 Nov;62(3):227–232. doi: 10.1093/oxfordjournals.aje.a119775. [DOI] [PubMed] [Google Scholar]
  7. EVANS E. E. The antigenic composition of Cryptococcus neoformans. I. A serologic classification by means of the capsular and agglutination reactions. J Immunol. 1950 May;64(5):423–430. [PubMed] [Google Scholar]
  8. Ellis D. H., Pfeiffer T. J. Natural habitat of Cryptococcus neoformans var. gattii. J Clin Microbiol. 1990 Jul;28(7):1642–1644. doi: 10.1128/jcm.28.7.1642-1644.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hamilton A. J., Bartholomew M. A., Fenelon L. E., Figueroa J., Hay R. J. A murine monoclonal antibody exhibiting high species specificity for Histoplasma capsulatum var. capsulatum. J Gen Microbiol. 1990 Feb;136(2):331–335. doi: 10.1099/00221287-136-2-331. [DOI] [PubMed] [Google Scholar]
  10. Hamilton A. J., Goodley J. Purification of the 115-kilodalton exoantigen of Cryptococcus neoformans and its recognition by immune sera. J Clin Microbiol. 1993 Feb;31(2):335–339. doi: 10.1128/jcm.31.2.335-339.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hamilton A. J., Holdom M. D., Jeavons L. Expression of the Cu,Zn superoxide dismutase of Aspergillus fumigatus as determined by immunochemistry and immunoelectron microscopy. FEMS Immunol Med Microbiol. 1996 Jun;14(2-3):95–102. doi: 10.1111/j.1574-695X.1996.tb00275.x. [DOI] [PubMed] [Google Scholar]
  12. Hamilton A. J., Jeavons L., Hobby P., Hay R. J. A 34- to 38-kilodalton Cryptococcus neoformans glycoprotein produced as an exoantigen bearing a glycosylated species-specific epitope. Infect Immun. 1992 Jan;60(1):143–149. doi: 10.1128/iai.60.1.143-149.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Holdom M. D., Hay R. J., Hamilton A. J. Purification, N-terminal amino acid sequence and partial characterization of a Cu,Zn superoxide dismutase from the pathogenic fungus Aspergillus fumigatus. Free Radic Res. 1995 Jun;22(6):519–531. doi: 10.3109/10715769509150324. [DOI] [PubMed] [Google Scholar]
  14. Ikeda R., Jacobson E. S. Heterogeneity of phenol oxidases in Cryptococcus neoformans. Infect Immun. 1992 Sep;60(9):3552–3555. doi: 10.1128/iai.60.9.3552-3555.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jacobson E. S., Jenkins N. D., Todd J. M. Relationship between superoxide dismutase and melanin in a pathogenic fungus. Infect Immun. 1994 Sep;62(9):4085–4086. doi: 10.1128/iai.62.9.4085-4086.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jacobson E. S., Tinnell S. B. Antioxidant function of fungal melanin. J Bacteriol. 1993 Nov;175(21):7102–7104. doi: 10.1128/jb.175.21.7102-7104.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kwon-Chung K. J., Polacheck I., Bennett J. E. Improved diagnostic medium for separation of Cryptococcus neoformans var. neoformans (serotypes A and D) and Cryptococcus neoformans var. gattii (serotypes B and C). J Clin Microbiol. 1982 Mar;15(3):535–537. doi: 10.1128/jcm.15.3.535-537.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kwon-Chung K. J., Polacheck I., Popkin T. J. Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice. J Bacteriol. 1982 Jun;150(3):1414–1421. doi: 10.1128/jb.150.3.1414-1421.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kwon-Chung K. J., Wickes B. L., Booth J. L., Vishniac H. S., Bennett J. E. Urease inhibition by EDTA in the two varieties of Cryptococcus neoformans. Infect Immun. 1987 Aug;55(8):1751–1754. doi: 10.1128/iai.55.8.1751-1754.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Meyer W., Mitchell T. G., Freedman E. Z., Vilgalys R. Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans. J Clin Microbiol. 1993 Sep;31(9):2274–2280. doi: 10.1128/jcm.31.9.2274-2280.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mitchell D. H., Sorrell T. C., Allworth A. M., Heath C. H., McGregor A. R., Papanaoum K., Richards M. J., Gottlieb T. Cryptococcal disease of the CNS in immunocompetent hosts: influence of cryptococcal variety on clinical manifestations and outcome. Clin Infect Dis. 1995 Mar;20(3):611–616. doi: 10.1093/clinids/20.3.611. [DOI] [PubMed] [Google Scholar]
  22. Pedrajas J. R., Peinado J., López-Barea J. Purification of Cu, Zn-superoxide dismutase isoenzymes from fish liver: appearance of new isoforms as a consequence of pollution. Free Radic Res Commun. 1993;19(1):29–41. doi: 10.3109/10715769309056496. [DOI] [PubMed] [Google Scholar]
  23. Read S. M., Northcote D. H. Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein. Anal Biochem. 1981 Sep 1;116(1):53–64. doi: 10.1016/0003-2697(81)90321-3. [DOI] [PubMed] [Google Scholar]
  24. Tesfa-Selase F., Hay R. J. Superoxide dismutase of Cryptococcus neoformans: purification and characterization. J Med Vet Mycol. 1995 Jul-Aug;33(4):253–259. [PubMed] [Google Scholar]
  25. Wang Y., Casadevall A. Susceptibility of melanized and nonmelanized Cryptococcus neoformans to nitrogen- and oxygen-derived oxidants. Infect Immun. 1994 Jul;62(7):3004–3007. doi: 10.1128/iai.62.7.3004-3007.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wickes B. L., Moore T. D., Kwon-Chung K. J. Comparison of the electrophoretic karyotypes and chromosomal location of ten genes in the two varieties of Cryptococcus neoformans. Microbiology. 1994 Mar;140(Pt 3):543–550. doi: 10.1099/00221287-140-3-543. [DOI] [PubMed] [Google Scholar]
  27. Williamson P. R. Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans: identification as a laccase. J Bacteriol. 1994 Feb;176(3):656–664. doi: 10.1128/jb.176.3.656-664.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wilson D. E., Bennett J. E., Bailey J. W. Serologic grouping of Cryptococcus neoformans. Proc Soc Exp Biol Med. 1968 Mar;127(3):820–823. doi: 10.3181/00379727-127-32812. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES