Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Feb;65(2):597–603. doi: 10.1128/iai.65.2.597-603.1997

Stabilized expression of mRNA is associated with mycobacterial resistance controlled by Nramp1.

D H Brown 1, W P Lafuse 1, B S Zwilling 1
PMCID: PMC176101  PMID: 9009318

Abstract

Control of innate resistance to the growth of mycobacteria is mediated by a gene termed Nramp1. Although the role of the protein product of Nramp1 in mediating resistance to mycobacterial growth is not known, the effect of the gene is pleiotropic and it has been suggested that the gene controls macrophage priming for activation. We have found that the functional capacity of macrophages from Mycobacterium bovis BCG-susceptible mice can be suppressed by corticosterone, while the function of macrophages from BCG-resistant mice remains unaffected. In this study, we show that corticosterone differentially affects the stability of mRNAs of several recombinant gamma interferon (rIFN-gamma)-induced genes. Treatment of macrophages from BCG-susceptible mice with corticosterone accelerates the decay of Nramp1 mRNA. The mRNA of IFN-gamma-induced genes of macrophages from BCG-resistant mice was more stable than the mRNA of macrophages from BCG-susceptible mice in the presence or absence of corticosterone. The results of this investigation suggest that Nramp1 acts by stabilizing the mRNA of genes associated with macrophage activation, thus accounting for the functional differences that have been attributed to these macrophage populations.

Full Text

The Full Text of this article is available as a PDF (444.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barton C. H., Whitehead S. H., Blackwell J. M. Nramp transfection transfers Ity/Lsh/Bcg-related pleiotropic effects on macrophage activation: influence on oxidative burst and nitric oxide pathways. Mol Med. 1995 Mar;1(3):267–279. [PMC free article] [PubMed] [Google Scholar]
  2. Beato M. Gene regulation by steroid hormones. Cell. 1989 Feb 10;56(3):335–344. doi: 10.1016/0092-8674(89)90237-7. [DOI] [PubMed] [Google Scholar]
  3. Blackwell J. M., Barton C. H., White J. K., Roach T. I., Shaw M. A., Whitehead S. H., Mock B. A., Searle S., Williams H., Baker A. M. Genetic regulation of leishmanial and mycobacterial infections: the Lsh/Ity/Bcg gene story continues. Immunol Lett. 1994 Dec;43(1-2):99–107. doi: 10.1016/0165-2478(94)00161-8. [DOI] [PubMed] [Google Scholar]
  4. Blackwell J. M., Barton C. H., White J. K., Searle S., Baker A. M., Williams H., Shaw M. A. Genomic organization and sequence of the human NRAMP gene: identification and mapping of a promoter region polymorphism. Mol Med. 1995 Jan;1(2):194–205. [PMC free article] [PubMed] [Google Scholar]
  5. Brown D. H., LaFuse W., Zwilling B. S. Cytokine-mediated activation of macrophages from Mycobacterium bovis BCG-resistant and -susceptible mice: differential effects of corticosterone on antimycobacterial activity and expression of the Bcg gene (Candidate Nramp). Infect Immun. 1995 Aug;63(8):2983–2988. doi: 10.1128/iai.63.8.2983-2988.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown D. H., Sheridan J., Pearl D., Zwilling B. S. Regulation of mycobacterial growth by the hypothalamus-pituitary-adrenal axis: differential responses of Mycobacterium bovis BCG-resistant and -susceptible mice. Infect Immun. 1993 Nov;61(11):4793–4800. doi: 10.1128/iai.61.11.4793-4800.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown D. H., Zwilling B. S. Activation of the hypothalamic-pituitary-adrenal axis differentially affects the anti-mycobacterial activity of macrophages from BCG-resistant and susceptible mice. J Neuroimmunol. 1994 Sep;53(2):181–187. doi: 10.1016/0165-5728(94)90028-0. [DOI] [PubMed] [Google Scholar]
  8. Calandra T., Bernhagen J., Metz C. N., Spiegel L. A., Bacher M., Donnelly T., Cerami A., Bucala R. MIF as a glucocorticoid-induced modulator of cytokine production. Nature. 1995 Sep 7;377(6544):68–71. doi: 10.1038/377068a0. [DOI] [PubMed] [Google Scholar]
  9. Drapier J. C., Hirling H., Wietzerbin J., Kaldy P., Kühn L. C. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages. EMBO J. 1993 Sep;12(9):3643–3649. doi: 10.1002/j.1460-2075.1993.tb06038.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Evans R., Kamdar S. J. Stability of RNA isolated from macrophages depends on the removal of an RNA-degrading activity early in the extraction procedure. Biotechniques. 1990 Apr;8(4):357–360. [PubMed] [Google Scholar]
  11. Formica S., Roach T. I., Blackwell J. M. Interaction with extracellular matrix proteins influences Lsh/Ity/Bcg (candidate Nramp) gene regulation of macrophage priming/activation for tumour necrosis factor-alpha and nitrite release. Immunology. 1994 May;82(1):42–50. [PMC free article] [PubMed] [Google Scholar]
  12. Gazzinelli R. T., Eltoum I., Wynn T. A., Sher A. Acute cerebral toxoplasmosis is induced by in vivo neutralization of TNF-alpha and correlates with the down-regulated expression of inducible nitric oxide synthase and other markers of macrophage activation. J Immunol. 1993 Oct 1;151(7):3672–3681. [PubMed] [Google Scholar]
  13. Heidenreich S., Gong J. H., Schmidt A., Nain M., Gemsa D. Macrophage activation by granulocyte/macrophage colony-stimulating factor. Priming for enhanced release of tumor necrosis factor-alpha and prostaglandin E2. J Immunol. 1989 Aug 15;143(4):1198–1205. [PubMed] [Google Scholar]
  14. Hentze M. W. Determinants and regulation of cytoplasmic mRNA stability in eukaryotic cells. Biochim Biophys Acta. 1991 Nov 11;1090(3):281–292. doi: 10.1016/0167-4781(91)90191-n. [DOI] [PubMed] [Google Scholar]
  15. Higgins C. F., Peltz S. W., Jacobson A. Turnover of mRNA in prokaryotes and lower eukaryotes. Curr Opin Genet Dev. 1992 Oct;2(5):739–747. doi: 10.1016/s0959-437x(05)80134-0. [DOI] [PubMed] [Google Scholar]
  16. Howard L. A., Ortlepp S. A. Construction of cloning/sequencing vectors with an alternative polylinker. Biotechniques. 1989 Oct;7(9):940–942. [PubMed] [Google Scholar]
  17. Johnson H. M., Torres B. A., Smith E. M., Dion L. D., Blalock J. E. Regulation of lymphokine (gamma-interferon) production by corticotropin. J Immunol. 1984 Jan;132(1):246–250. [PubMed] [Google Scholar]
  18. Karin M., Yang-Yen H. F., Chambard J. C., Deng T., Saatcioglu F. Various modes of gene regulation by nuclear receptors for steroid and thyroid hormones. Eur J Clin Pharmacol. 1993;45 (Suppl 1):S9–S44. doi: 10.1007/BF01844197. [DOI] [PubMed] [Google Scholar]
  19. Kern J. A., Lamb R. J., Reed J. C., Daniele R. P., Nowell P. C. Dexamethasone inhibition of interleukin 1 beta production by human monocytes. Posttranscriptional mechanisms. J Clin Invest. 1988 Jan;81(1):237–244. doi: 10.1172/JCI113301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Koff W. C., Dunegan M. A. Modulation of macrophage-mediated tumoricidal activity by neuropeptides and neurohormones. J Immunol. 1985 Jul;135(1):350–354. [PubMed] [Google Scholar]
  21. Lafuse W. P., Brown D., Castle L., Zwilling B. S. Cloning and characterization of a novel cDNA that is IFN-gamma-induced in mouse peritoneal macrophages and encodes a putative GTP-binding protein. J Leukoc Biol. 1995 Mar;57(3):477–483. doi: 10.1002/jlb.57.3.477. [DOI] [PubMed] [Google Scholar]
  22. Lafuse W. P., Brown D., Castle L., Zwilling B. S. IFN-gamma increases cathepsin H mRNA levels in mouse macrophages. J Leukoc Biol. 1995 Apr;57(4):663–669. doi: 10.1002/jlb.57.4.663. [DOI] [PubMed] [Google Scholar]
  23. Lee S. W., Tsou A. P., Chan H., Thomas J., Petrie K., Eugui E. M., Allison A. C. Glucocorticoids selectively inhibit the transcription of the interleukin 1 beta gene and decrease the stability of interleukin 1 beta mRNA. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1204–1208. doi: 10.1073/pnas.85.4.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nathan C. Natural resistance and nitric oxide. Cell. 1995 Sep 22;82(6):873–876. doi: 10.1016/0092-8674(95)90019-5. [DOI] [PubMed] [Google Scholar]
  25. Northrop J. P., Crabtree G. R., Mattila P. S. Negative regulation of interleukin 2 transcription by the glucocorticoid receptor. J Exp Med. 1992 May 1;175(5):1235–1245. doi: 10.1084/jem.175.5.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Peppel K., Vinci J. M., Baglioni C. The AU-rich sequences in the 3' untranslated region mediate the increased turnover of interferon mRNA induced by glucocorticoids. J Exp Med. 1991 Feb 1;173(2):349–355. doi: 10.1084/jem.173.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Potter M., O'Brien A. D., Skamene E., Gros P., Forget A., Kongshavn P. A., Wax J. S. A BALB/c congenic strain of mice that carries a genetic locus (Ityr) controlling resistance to intracellular parasites. Infect Immun. 1983 Jun;40(3):1234–1235. doi: 10.1128/iai.40.3.1234-1235.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Roach T. I., Chatterjee D., Blackwell J. M. Induction of early-response genes KC and JE by mycobacterial lipoarabinomannans: regulation of KC expression in murine macrophages by Lsh/Ity/Bcg (candidate Nramp). Infect Immun. 1994 Apr;62(4):1176–1184. doi: 10.1128/iai.62.4.1176-1184.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schurr E., Skamene E., Forget A., Gros P. Linkage analysis of the Bcg gene on mouse chromosome 1. Identification of a tightly linked marker. J Immunol. 1989 Jun 15;142(12):4507–4513. [PubMed] [Google Scholar]
  30. Sivo J., Politis A. D., Vogel S. N. Differential effects of interferon-gamma and glucocorticoids on Fc gamma R gene expression in murine macrophages. J Leukoc Biol. 1993 Nov;54(5):451–457. doi: 10.1002/jlb.54.5.451. [DOI] [PubMed] [Google Scholar]
  31. Supek F., Supekova L., Nelson H., Nelson N. A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5105–5110. doi: 10.1073/pnas.93.10.5105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vidal S. M., Malo D., Vogan K., Skamene E., Gros P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell. 1993 May 7;73(3):469–485. doi: 10.1016/0092-8674(93)90135-d. [DOI] [PubMed] [Google Scholar]
  33. Weiss G., Goossen B., Doppler W., Fuchs D., Pantopoulos K., Werner-Felmayer G., Wachter H., Hentze M. W. Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway. EMBO J. 1993 Sep;12(9):3651–3657. doi: 10.1002/j.1460-2075.1993.tb06039.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Weiss G., Wachter H., Fuchs D. Linkage of cell-mediated immunity to iron metabolism. Immunol Today. 1995 Oct;16(10):495–500. doi: 10.1016/0167-5699(95)80034-4. [DOI] [PubMed] [Google Scholar]
  35. Wynn T. A., Nicolet C. M., Paulnock D. M. Identification and characterization of a new gene family induced during macrophage activation. J Immunol. 1991 Dec 15;147(12):4384–4392. [PubMed] [Google Scholar]
  36. Yamamoto K. R. Steroid receptor regulated transcription of specific genes and gene networks. Annu Rev Genet. 1985;19:209–252. doi: 10.1146/annurev.ge.19.120185.001233. [DOI] [PubMed] [Google Scholar]
  37. Zwilling B. S., Brown D., Pearl D. Induction of major histocompatibility complex class II glycoproteins by interferon-gamma: attenuation of the effects of restraint stress. J Neuroimmunol. 1992 Mar;37(1-2):115–122. doi: 10.1016/0165-5728(92)90162-e. [DOI] [PubMed] [Google Scholar]
  38. Zwilling B. S., Vespa L., Massie M. Regulation of I-A expression by murine peritoneal macrophages: differences linked to the Bcg gene. J Immunol. 1987 Mar 1;138(5):1372–1376. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES