Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Feb;65(2):636–639. doi: 10.1128/iai.65.2.636-639.1997

Protegrin structure and activity against Neisseria gonorrhoeae.

X D Qu 1, S S Harwig 1, W M Shafer 1, R I Lehrer 1
PMCID: PMC176107  PMID: 9009324

Abstract

Protegrin 1 (PG-1) is a broad-spectrum antimicrobial peptide that contains 18 amino acid residues (RG GRLCYCRRRFCVCVGR) and has two intramolecular cystine disulfide bonds. To determine the minimal structure responsible for protegrin-mediated activity against Neisseria gonorrhoeae, we synthesized 15 protegrin variants and tested them against two well-characterized gonococcal strains. The MICs of PG-1 were 0.61 microM (1.31 microg/ml) for the serum-sensitive strain F 62 and 0.98 microM (2.11 microg/ml) for the serum-resistant strain FA 19. Six amino acid residues (Arg1, Gly2, Gly3, Arg4, Gly17, and Arg18) and either disulfide bond could be deleted from PG-1 without impairing its potency against strain F 62. In contrast, only Gly17 and Arg18 could be removed without decreasing its activity against FA 19. Protegrin congener 64a (PC-64a; LTYCRRRFCVTV), a variant of PG-1 with 12 amino acid residues and one disulfide bond, displayed MICs of 0.45 microM (0.68 microg/ml) for strain F 62 and 1.37 microM (2.07 microg/ml) for strain FA 19, which approximated those of intact PG-1. Serum-sensitive sac-1+ and sac-3+ transformants of N. gonorrhoeae FA 19 and two FA 19 derivatives with truncated lipooligosaccharide structures were more susceptible to PG-1 and variants with altered disulfide structures. These data suggest that structurally simpler protegrin variants, such as PC-64a, could be used as topical microbicides for N. gonorrhoeae. They also suggest that the cystine-stabilized antiparallel beta-sheet formed by PG-1 residues 5 to 16 is principally responsible for its activity against gonococci.

Full Text

The Full Text of this article is available as a PDF (192.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aumelas A., Mangoni M., Roumestand C., Chiche L., Despaux E., Grassy G., Calas B., Chavanieu A. Synthesis and solution structure of the antimicrobial peptide protegrin-1. Eur J Biochem. 1996 May 1;237(3):575–583. doi: 10.1111/j.1432-1033.1996.0575p.x. [DOI] [PubMed] [Google Scholar]
  2. Bensch K. W., Raida M., Mägert H. J., Schulz-Knappe P., Forssmann W. G. hBD-1: a novel beta-defensin from human plasma. FEBS Lett. 1995 Jul 17;368(2):331–335. doi: 10.1016/0014-5793(95)00687-5. [DOI] [PubMed] [Google Scholar]
  3. Cannon J. G., Lee T. J., Guymon L. F., Sparling P. F. Genetics of serum resistance in Neisseria gonorrhoeae: the sac-1 genetic locus. Infect Immun. 1981 May;32(2):547–552. doi: 10.1128/iai.32.2.547-552.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fahrner R. L., Dieckmann T., Harwig S. S., Lehrer R. I., Eisenberg D., Feigon J. Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. Chem Biol. 1996 Jul;3(7):543–550. doi: 10.1016/s1074-5521(96)90145-3. [DOI] [PubMed] [Google Scholar]
  5. Ganz T., Lehrer R. I. Defensins. Curr Opin Immunol. 1994 Aug;6(4):584–589. doi: 10.1016/0952-7915(94)90145-7. [DOI] [PubMed] [Google Scholar]
  6. Harwig S. S., Swiderek K. M., Lee T. D., Lehrer R. I. Determination of disulphide bridges in PG-2, an antimicrobial peptide from porcine leukocytes. J Pept Sci. 1995 May-Jun;1(3):207–215. doi: 10.1002/psc.310010308. [DOI] [PubMed] [Google Scholar]
  7. Harwig S. S., Waring A., Yang H. J., Cho Y., Tan L., Lehrer R. I. Intramolecular disulfide bonds enhance the antimicrobial and lytic activities of protegrins at physiological sodium chloride concentrations. Eur J Biochem. 1996 Sep 1;240(2):352–357. doi: 10.1111/j.1432-1033.1996.0352h.x. [DOI] [PubMed] [Google Scholar]
  8. Jones D. E., Bevins C. L. Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the human bowel. FEBS Lett. 1993 Jan 4;315(2):187–192. doi: 10.1016/0014-5793(93)81160-2. [DOI] [PubMed] [Google Scholar]
  9. Jones D. E., Bevins C. L. Paneth cells of the human small intestine express an antimicrobial peptide gene. J Biol Chem. 1992 Nov 15;267(32):23216–23225. [PubMed] [Google Scholar]
  10. Kokryakov V. N., Harwig S. S., Panyutich E. A., Shevchenko A. A., Aleshina G. M., Shamova O. V., Korneva H. A., Lehrer R. I. Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett. 1993 Jul 26;327(2):231–236. doi: 10.1016/0014-5793(93)80175-t. [DOI] [PubMed] [Google Scholar]
  11. Lucas C. E., Hagman K. E., Levin J. C., Stein D. C., Shafer W. M. Importance of lipooligosaccharide structure in determining gonococcal resistance to hydrophobic antimicrobial agents resulting from the mtr efflux system. Mol Microbiol. 1995 Jun;16(5):1001–1009. doi: 10.1111/j.1365-2958.1995.tb02325.x. [DOI] [PubMed] [Google Scholar]
  12. Mallow E. B., Harris A., Salzman N., Russell J. P., DeBerardinis R. J., Ruchelli E., Bevins C. L. Human enteric defensins. Gene structure and developmental expression. J Biol Chem. 1996 Feb 23;271(8):4038–4045. doi: 10.1074/jbc.271.8.4038. [DOI] [PubMed] [Google Scholar]
  13. Qu X. D., Harwig S. S., Oren A. M., Shafer W. M., Lehrer R. I. Susceptibility of Neisseria gonorrhoeae to protegrins. Infect Immun. 1996 Apr;64(4):1240–1245. doi: 10.1128/iai.64.4.1240-1245.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tamamura H., Murakami T., Horiuchi S., Sugihara K., Otaka A., Takada W., Ibuka T., Waki M., Yamamoto N., Fujii N. Synthesis of protegrin-related peptides and their antibacterial and anti-human immunodeficiency virus activity. Chem Pharm Bull (Tokyo) 1995 May;43(5):853–858. doi: 10.1248/cpb.43.853. [DOI] [PubMed] [Google Scholar]
  15. Yasin B., Harwig S. S., Lehrer R. I., Wagar E. A. Susceptibility of Chlamydia trachomatis to protegrins and defensins. Infect Immun. 1996 Mar;64(3):709–713. doi: 10.1128/iai.64.3.709-713.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES