Skip to main content
Heart logoLink to Heart
. 1998 Sep;80(3):226–228. doi: 10.1136/hrt.80.3.226

Cardiac troponin T does not increase after electrical cardioversion for atrial fibrillation or atrial flutter

K Greaves 1, T Crake 1
PMCID: PMC1761086  PMID: 9875078

Abstract

Objective—To determine whether cardiac troponin T increases after electrical cardioversion in patients with atrial fibrillation or atrial flutter.
Design—Serum creatine kinase (CK), creatine kinase-MB (CKMB), and cardiac troponin T were measured before, 24 hours, and 48 hours after cardioversion in 15 patients with atrial fibrillation or atrial flutter.
Results—12 of the 15 patients (80%) were successfully cardioverted to sinus rhythm. The median number of shocks was three (range one to six), the median cumulative energy 710 J (50 to 1430 J), and the median peak energy 300 J (50 to 360 J). Total CK increased from a baseline median concentration of 92 (45 to 259) to 1324 (96 to 6660) U/l at 24 hours and 1529 (120 to 4774) U/l at 48 hours after cardioversion. There was a small increase in CKMB but the ratio of CKMB to CK did not increase. There was no increase in cardiac troponin T in any patient.
Conclusions—Following electrical cardioversion of atrial fibrillation or atrial flutter, cardiac troponin T remains unchanged despite a large rise in total CK, indicating that the CK is derived from skeletal muscle and that myocardial injury does not occur. If cardiac troponin T is increased after cardioversion for atrial arrhythmias then other causes of myocardial damage should be sought.

 Keywords: atrial fibrillation;  atrial flutter;  cardioversion;  troponin T

Full Text

The Full Text of this article is available as a PDF (60.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. E., 3rd, Abendschein D. R., Jaffe A. S. Biochemical markers of myocardial injury. Is MB creatine kinase the choice for the 1990s? Circulation. 1993 Aug;88(2):750–763. doi: 10.1161/01.cir.88.2.750. [DOI] [PubMed] [Google Scholar]
  2. Ehsani A., Ewy G. A., Sobel B. E. Effects of electrical countershock on serum creatine phosphokinase (CPK) isoenzyme activity. Am J Cardiol. 1976 Jan;37(1):12–18. doi: 10.1016/0002-9149(76)90492-6. [DOI] [PubMed] [Google Scholar]
  3. Goto I., Nagamine M., Katsuki S. Creatine phosphokinase isozymes in muscles. Human fetus and patients. Arch Neurol. 1969 Apr;20(4):422–429. doi: 10.1001/archneur.1969.00480100098014. [DOI] [PubMed] [Google Scholar]
  4. Grande P., Hansen B. F., Christiansen C., Naestoft J. Estimation of acute myocardial infarct size in man by serum CK-MB measurements. Circulation. 1982 Apr;65(4):756–764. doi: 10.1161/01.cir.65.4.756. [DOI] [PubMed] [Google Scholar]
  5. Hamm C. W., Ravkilde J., Gerhardt W., Jørgensen P., Peheim E., Ljungdahl L., Goldmann B., Katus H. A. The prognostic value of serum troponin T in unstable angina. N Engl J Med. 1992 Jul 16;327(3):146–150. doi: 10.1056/NEJM199207163270302. [DOI] [PubMed] [Google Scholar]
  6. Jakobsson J., Odmansson I., Nordlander R. Enzyme release after elective cardioversion. Eur Heart J. 1990 Aug;11(8):749–752. doi: 10.1093/oxfordjournals.eurheartj.a059790. [DOI] [PubMed] [Google Scholar]
  7. Katus H. A., Looser S., Hallermayer K., Remppis A., Scheffold T., Borgya A., Essig U., Geuss U. Development and in vitro characterization of a new immunoassay of cardiac troponin T. Clin Chem. 1992 Mar;38(3):386–393. [PubMed] [Google Scholar]
  8. Konttinen A., Hupli V., Louhija A., Härtel G. Origin of elevated serum enzyme activities after direct-current countershock. N Engl J Med. 1969 Jul 31;281(5):231–234. doi: 10.1056/NEJM196907312810502. [DOI] [PubMed] [Google Scholar]
  9. Metcalfe M. J., Smith F., Jennings K., Paterson N. Does cardioversion of atrial fibrillation result in myocardial damage? Br Med J (Clin Res Ed) 1988 May 14;296(6633):1364–1364. doi: 10.1136/bmj.296.6633.1364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. O'Neill P. G., Faitelson L., Taylor A., Puleo P., Roberts R., Pacifico A. Time course of creatine kinase release after termination of sustained ventricular dysrhythmias. Am Heart J. 1991 Sep;122(3 Pt 1):709–714. doi: 10.1016/0002-8703(91)90515-j. [DOI] [PubMed] [Google Scholar]
  11. Ohman E. M., Armstrong P. W., Christenson R. H., Granger C. B., Katus H. A., Hamm C. W., O'Hanesian M. A., Wagner G. S., Kleiman N. S., Harrell F. E., Jr Cardiac troponin T levels for risk stratification in acute myocardial ischemia. GUSTO IIA Investigators. N Engl J Med. 1996 Oct 31;335(18):1333–1341. doi: 10.1056/NEJM199610313351801. [DOI] [PubMed] [Google Scholar]
  12. Stubbs P., Collinson P., Moseley D., Greenwood T., Noble M. Prospective study of the role of cardiac troponin T in patients admitted with unstable angina. BMJ. 1996 Aug 3;313(7052):262–264. doi: 10.1136/bmj.313.7052.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wilson C. M., Allen J. D., Bridges J. B., Adgey A. A. Death and damage caused by multiple direct current shocks: studies in an animal model. Eur Heart J. 1988 Nov;9(11):1257–1265. doi: 10.1093/oxfordjournals.eurheartj.a062438. [DOI] [PubMed] [Google Scholar]
  14. el Allaf M., Chapelle J. P., el Allaf D., Adam A., Faymonville M. E., Laurent P., Heusghem C. Differentiating muscle damage from myocardial injury by means of the serum creatine kinase (CK) isoenzyme MB mass measurement/total CK activity ratio. Clin Chem. 1986 Feb;32(2):291–295. [PubMed] [Google Scholar]

Articles from Heart are provided here courtesy of BMJ Publishing Group

RESOURCES