Full Text
The Full Text of this article is available as a PDF (136.9 KB).
Figure 1 .
The relation between myocardial blood flow and systolic function, the "flow-function" relation, which was derived from short term experiments. When flow is reduced for longer periods (weeks to months), it is likely that this relation becomes much steeper.10 When myocardium is operating below this line, function is disproportionately depressed relative to flow—that is, the myocardium is stunned (S on the diagram). When myocardium is operating above this line function exceeds flow, and ischaemia is likely to result. Chronically hypoperfused myocardium, as a result of an epicardial stenosis restricting basal coronary flow, will be operating on the line (H in the diagram). Conversely, the situation S is the result of repetitive bouts of demand ischaemia in a segment of myocardium subtended by a stenosis that severely limits flow reserve, but not basal coronary flow. Myocardial blood flow is likely to vary owing to small alterations in transmyocardial vascular resistance, as a result of changes within the stenosis and/or microvasculature (see text). Since the chronic relation between perfusion and contraction is likely to be steeper than depicted, these small variations in flow may result in an interchange of H and S, without any appreciable change in systolic function. Following, inotropic stimulation, it is unlikely that myocardial blood flow will increase substantially. Thus myocardium operating at H will increase systolic function to point A, which will exceed that expected from blood flow, and it is likely that this increase in function will be curtailed by the onset of ischaemia. In stunned myocardium (S), function could increase to point B before function exceeds that expected from blood flow. Thus in both circumstances there can be a bimodal response to inotropes, and therefore the two cannot be reliably distinguished by stress echocardiography.
Figure 2 .

The electron microscopy appearance of a myocyte in a region of reversible left ventricular dysfunction, taken from a patient undergoing operative revascularisation. Sarcomeres, which normally occupy the myocyte, are confined to the subsarcolemmal margins (arrowhead). In addition, mitochondria are virtually absent and those that are present are small and round (arrows). Furthermore, there is marked glycogen accumulation (gl). [Photomicrograph supplied by Prof M Borgers, Department of Morphology, Janssen Research Foundation, Beerse, Belgium.]
Figure 3 .
The effect of brief coronary occlusion on systolic function in the dog. The dark shaded box indicates a short episode of ischaemia. The myocardium rapidly becomes dyskinetic and following restoration of flow there is a gradual return of function. This period between the episode of ischaemia and recovery of full function is known as stunning. (Adapted from Bolli et al.18)
Figure 4 .
The relation between resting and maximum myocardial blood flow at different degrees of stenosis severity. See text for details. (Adapted from Gould et al.19)
Figure 5 .
Repetitive stunning. The black boxes indicate short episodes of ischaemia. Contractility starts at 100% and rapidly falls during the first episode of ischaemia. Following restoration of flow, contractility starts to improve, but before it has returned to normal, a further episode of ischaemia ensues, resulting in a further reduction in contractility. Repeated short episodes of ischaemia may therefore result in an apparent chronic impairment of contractility (see text). (Adapted from Bolli.25)
Figure 6 .

Relation between coronary blood flow and coronary pressure. Adapted from Hoffman.31 See text for explanation.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Afridi I., Kleiman N. S., Raizner A. E., Zoghbi W. A. Dobutamine echocardiography in myocardial hibernation. Optimal dose and accuracy in predicting recovery of ventricular function after coronary angioplasty. Circulation. 1995 Feb 1;91(3):663–670. doi: 10.1161/01.cir.91.3.663. [DOI] [PubMed] [Google Scholar]
- Ausma J., Cleutjens J., Thoné F., Flameng W., Ramaekers F., Borgers M. Chronic hibernating myocardium: interstitial changes. Mol Cell Biochem. 1995 Jun 7;147(1-2):35–42. doi: 10.1007/BF00944781. [DOI] [PubMed] [Google Scholar]
- Ausma J., Fürst D., Thoné F., Shivalkar B., Flameng W., Weber K., Ramaekers F., Borgers M. Molecular changes of titin in left ventricular dysfunction as a result of chronic hibernation. J Mol Cell Cardiol. 1995 May;27(5):1203–1212. doi: 10.1016/0022-2828(95)90056-x. [DOI] [PubMed] [Google Scholar]
- Bergmann S. R., Fox K. A., Rand A. L., McElvany K. D., Welch M. J., Markham J., Sobel B. E. Quantification of regional myocardial blood flow in vivo with H215O. Circulation. 1984 Oct;70(4):724–733. doi: 10.1161/01.cir.70.4.724. [DOI] [PubMed] [Google Scholar]
- Bergmann S. R., Hack S., Tewson T., Welch M. J., Sobel B. E. The dependence of accumulation of 13NH3 by myocardium on metabolic factors and its implications for quantitative assessment of perfusion. Circulation. 1980 Jan;61(1):34–43. doi: 10.1161/01.cir.61.1.34. [DOI] [PubMed] [Google Scholar]
- Bergmann S. R., Herrero P., Markham J., Weinheimer C. J., Walsh M. N. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol. 1989 Sep;14(3):639–652. doi: 10.1016/0735-1097(89)90105-8. [DOI] [PubMed] [Google Scholar]
- Bigger J. T., Jr, Fleiss J. L., Kleiger R., Miller J. P., Rolnitzky L. M. The relationships among ventricular arrhythmias, left ventricular dysfunction, and mortality in the 2 years after myocardial infarction. Circulation. 1984 Feb;69(2):250–258. doi: 10.1161/01.cir.69.2.250. [DOI] [PubMed] [Google Scholar]
- Bolli R. Myocardial 'stunning' in man. Circulation. 1992 Dec;86(6):1671–1691. doi: 10.1161/01.cir.86.6.1671. [DOI] [PubMed] [Google Scholar]
- Bolli R., Zhu W. X., Thornby J. I., O'Neill P. G., Roberts R. Time course and determinants of recovery of function after reversible ischemia in conscious dogs. Am J Physiol. 1988 Jan;254(1 Pt 2):H102–H114. doi: 10.1152/ajpheart.1988.254.1.H102. [DOI] [PubMed] [Google Scholar]
- Cigarroa C. G., deFilippi C. R., Brickner M. E., Alvarez L. G., Wait M. A., Grayburn P. A. Dobutamine stress echocardiography identifies hibernating myocardium and predicts recovery of left ventricular function after coronary revascularization. Circulation. 1993 Aug;88(2):430–436. doi: 10.1161/01.cir.88.2.430. [DOI] [PubMed] [Google Scholar]
- Depré C., Vanoverschelde J. L., Melin J. A., Borgers M., Bol A., Ausma J., Dion R., Wijns W. Structural and metabolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans. Am J Physiol. 1995 Mar;268(3 Pt 2):H1265–H1275. doi: 10.1152/ajpheart.1995.268.3.H1265. [DOI] [PubMed] [Google Scholar]
- Di Carli M. F., Davidson M., Little R., Khanna S., Mody F. V., Brunken R. C., Czernin J., Rokhsar S., Stevenson L. W., Laks H. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol. 1994 Mar 15;73(8):527–533. doi: 10.1016/0002-9149(94)90327-1. [DOI] [PubMed] [Google Scholar]
- Diamond G. A., Forrester J. S., deLuz P. L., Wyatt H. L., Swan H. J. Post-extrasystolic potentiation of ischemic myocardium by atrial stimulation. Am Heart J. 1978 Feb;95(2):204–209. doi: 10.1016/0002-8703(78)90464-7. [DOI] [PubMed] [Google Scholar]
- Elefteriades J. A., Tolis G., Jr, Levi E., Mills L. K., Zaret B. L. Coronary artery bypass grafting in severe left ventricular dysfunction: excellent survival with improved ejection fraction and functional state. J Am Coll Cardiol. 1993 Nov 1;22(5):1411–1417. doi: 10.1016/0735-1097(93)90551-b. [DOI] [PubMed] [Google Scholar]
- Gallagher K. P. Myocardial hibernation in terms of the flow-function relationship. Basic Res Cardiol. 1995 Jan-Feb;90(1):12–15. doi: 10.1007/BF00795108. [DOI] [PubMed] [Google Scholar]
- Gould K. L., Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol. 1974 Jul;34(1):48–55. doi: 10.1016/0002-9149(74)90092-7. [DOI] [PubMed] [Google Scholar]
- Gould K. L., Lipscomb K., Hamilton G. W. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol. 1974 Jan;33(1):87–94. doi: 10.1016/0002-9149(74)90743-7. [DOI] [PubMed] [Google Scholar]
- Heyndrickx G. R., Millard R. W., McRitchie R. J., Maroko P. R., Vatner S. F. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest. 1975 Oct;56(4):978–985. doi: 10.1172/JCI108178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffman J. I. Maximal coronary flow and the concept of coronary vascular reserve. Circulation. 1984 Aug;70(2):153–159. doi: 10.1161/01.cir.70.2.153. [DOI] [PubMed] [Google Scholar]
- Homans D. C., Laxson D. D., Sublett E., Lindstrom P., Bache R. J. Cumulative deterioration of myocardial function after repeated episodes of exercise-induced ischemia. Am J Physiol. 1989 May;256(5 Pt 2):H1462–H1471. doi: 10.1152/ajpheart.1989.256.5.H1462. [DOI] [PubMed] [Google Scholar]
- Ito B. R. Gradual onset of myocardial ischemia results in reduced myocardial infarction. Association with reduced contractile function and metabolic downregulation. Circulation. 1995 Apr 1;91(7):2058–2070. doi: 10.1161/01.cir.91.7.2058. [DOI] [PubMed] [Google Scholar]
- Kloner R. A., Allen J., Cox T. A., Zheng Y., Ruiz C. E. Stunned left ventricular myocardium after exercise treadmill testing in coronary artery disease. Am J Cardiol. 1991 Aug 1;68(4):329–334. doi: 10.1016/0002-9149(91)90827-8. [DOI] [PubMed] [Google Scholar]
- Kuhle W. G., Porenta G., Huang S. C., Buxton D., Gambhir S. S., Hansen H., Phelps M. E., Schelbert H. R. Quantification of regional myocardial blood flow using 13N-ammonia and reoriented dynamic positron emission tomographic imaging. Circulation. 1992 Sep;86(3):1004–1017. doi: 10.1161/01.cir.86.3.1004. [DOI] [PubMed] [Google Scholar]
- La Canna G., Alfieri O., Giubbini R., Gargano M., Ferrari R., Visioli O. Echocardiography during infusion of dobutamine for identification of reversibly dysfunction in patients with chronic coronary artery disease. J Am Coll Cardiol. 1994 Mar 1;23(3):617–626. doi: 10.1016/0735-1097(94)90745-5. [DOI] [PubMed] [Google Scholar]
- Maddahi J., Garcia E. V., Berman D. S., Waxman A., Swan H. J., Forrester J. Improved noninvasive assessment of coronary artery disease by quantitative analysis of regional stress myocardial distribution and washout of thallium-201. Circulation. 1981 Nov;64(5):924–935. doi: 10.1161/01.cir.64.5.924. [DOI] [PubMed] [Google Scholar]
- Marinho N. V., Keogh B. E., Costa D. C., Lammerstma A. A., Ell P. J., Camici P. G. Pathophysiology of chronic left ventricular dysfunction. New insights from the measurement of absolute myocardial blood flow and glucose utilization. Circulation. 1996 Feb 15;93(4):737–744. doi: 10.1161/01.cir.93.4.737. [DOI] [PubMed] [Google Scholar]
- Marshall R. C., Tillisch J. H., Phelps M. E., Huang S. C., Carson R., Henze E., Schelbert H. R. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography, 18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation. 1983 Apr;67(4):766–778. doi: 10.1161/01.cir.67.4.766. [DOI] [PubMed] [Google Scholar]
- Marwick T. H., MacIntyre W. J., Lafont A., Nemec J. J., Salcedo E. E. Metabolic responses of hibernating and infarcted myocardium to revascularization. A follow-up study of regional perfusion, function, and metabolism. Circulation. 1992 Apr;85(4):1347–1353. doi: 10.1161/01.cir.85.4.1347. [DOI] [PubMed] [Google Scholar]
- Murry C. E., Jennings R. B., Reimer K. A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986 Nov;74(5):1124–1136. doi: 10.1161/01.cir.74.5.1124. [DOI] [PubMed] [Google Scholar]
- Nitzsche E. U., Choi Y., Czernin J., Hoh C. K., Huang S. C., Schelbert H. R. Noninvasive quantification of myocardial blood flow in humans. A direct comparison of the [13N]ammonia and the [15O]water techniques. Circulation. 1996 Jun 1;93(11):2000–2006. doi: 10.1161/01.cir.93.11.2000. [DOI] [PubMed] [Google Scholar]
- Perrone-Filardi P., Pace L., Prastaro M., Squame F., Betocchi S., Soricelli A., Piscione F., Indolfi C., Crisci T., Salvatore M. Assessment of myocardial viability in patients with chronic coronary artery disease. Rest-4-hour-24-hour 201Tl tomography versus dobutamine echocardiography. Circulation. 1996 Dec 1;94(11):2712–2719. doi: 10.1161/01.cir.94.11.2712. [DOI] [PubMed] [Google Scholar]
- Rahimtoola S. H. The hibernating myocardium. Am Heart J. 1989 Jan;117(1):211–221. doi: 10.1016/0002-8703(89)90685-6. [DOI] [PubMed] [Google Scholar]
- Robertson W. S., Feigenbaum H., Armstrong W. F., Dillon J. C., O'Donnell J., McHenry P. W. Exercise echocardiography: a clinically practical addition in the evaluation of coronary artery disease. J Am Coll Cardiol. 1983 Dec;2(6):1085–1091. doi: 10.1016/s0735-1097(83)80334-9. [DOI] [PubMed] [Google Scholar]
- Ross J., Jr Myocardial perfusion-contraction matching. Implications for coronary heart disease and hibernation. Circulation. 1991 Mar;83(3):1076–1083. doi: 10.1161/01.cir.83.3.1076. [DOI] [PubMed] [Google Scholar]
- Schwarz E. R., Schaper J., vom Dahl J., Altehoefer C., Grohmann B., Schoendube F., Sheehan F. H., Uebis R., Buell U., Messmer B. J. Myocyte degeneration and cell death in hibernating human myocardium. J Am Coll Cardiol. 1996 Jun;27(7):1577–1585. doi: 10.1016/0735-1097(96)00059-9. [DOI] [PubMed] [Google Scholar]
- Scognamiglio R., Ponchia A., Fasoli G., Miraglia G., Dalla-Volta S. Exercise-induced left ventricular dysfunction in coronary heart disease. A model for studying the stunned myocardium in man. Eur Heart J. 1991 Dec;12 (Suppl G):16–19. [PubMed] [Google Scholar]
- Sun K. T., Czernin J., Krivokapich J., Lau Y. K., Böttcher M., Maurer G., Phelps M. E., Schelbert H. R. Effects of dobutamine stimulation on myocardial blood flow, glucose metabolism, and wall motion in normal and dysfunctional myocardium. Circulation. 1996 Dec 15;94(12):3146–3154. doi: 10.1161/01.cir.94.12.3146. [DOI] [PubMed] [Google Scholar]
- Tamaki N., Yonekura Y., Senda M., Yamashita K., Koide H., Saji H., Hashimoto T., Fudo T., Kambara H., Kawai C. Value and limitation of stress thallium-201 single photon emission computed tomography: comparison with nitrogen-13 ammonia positron tomography. J Nucl Med. 1988 Jul;29(7):1181–1188. [PubMed] [Google Scholar]
- Uren N. G., Melin J. A., De Bruyne B., Wijns W., Baudhuin T., Camici P. G. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med. 1994 Jun 23;330(25):1782–1788. doi: 10.1056/NEJM199406233302503. [DOI] [PubMed] [Google Scholar]
- Vanoverschelde J. L., Wijns W., Borgers M., Heyndrickx G., Depré C., Flameng W., Melin J. A. Chronic myocardial hibernation in humans. From bedside to bench. Circulation. 1997 Apr 1;95(7):1961–1971. doi: 10.1161/01.cir.95.7.1961. [DOI] [PubMed] [Google Scholar]
- Vanoverschelde J. L., Wijns W., Depré C., Essamri B., Heyndrickx G. R., Borgers M., Bol A., Melin J. A. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation. 1993 May;87(5):1513–1523. doi: 10.1161/01.cir.87.5.1513. [DOI] [PubMed] [Google Scholar]
- Vanoverschelde J. L., Wijns W., Depré C., Essamri B., Heyndrickx G. R., Borgers M., Bol A., Melin J. A. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation. 1993 May;87(5):1513–1523. doi: 10.1161/01.cir.87.5.1513. [DOI] [PubMed] [Google Scholar]
- Yonekura Y., Tamaki N., Senda M., Nohara R., Kambara H., Konishi Y., Koide H., Kureshi S. A., Saji H., Ban T. Detection of coronary artery disease with 13N-ammonia and high-resolution positron-emission computed tomography. Am Heart J. 1987 Mar;113(3):645–654. doi: 10.1016/0002-8703(87)90702-2. [DOI] [PubMed] [Google Scholar]
- de Silva R., Yamamoto Y., Rhodes C. G., Iida H., Nihoyannopoulos P., Davies G. J., Lammertsma A. A., Jones T., Maseri A. Preoperative prediction of the outcome of coronary revascularization using positron emission tomography. Circulation. 1992 Dec;86(6):1738–1742. doi: 10.1161/01.cir.86.6.1738. [DOI] [PubMed] [Google Scholar]




