Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Feb;65(2):661–667. doi: 10.1128/iai.65.2.661-667.1997

Oral carriage of Candida albicans in murine AIDS.

N Deslauriers 1, L Côté 1, S Montplaisir 1, L de Repentigny 1
PMCID: PMC176111  PMID: 9009328

Abstract

Oral candidiasis is a common fungal infection in patients infected with the human immunodeficiency virus (HIV). Although rare at the time of primary HIV infection, it is frequently found throughout the asymptomatic phase and is predictive of progressive immunodeficiency. However, the precise immune defect which results in outgrowth of commensal Candida albicans in HIV infection has not been identified. Mice infected with the Du5H(G6T2) mixture of mouse leukemia viruses develop a syndrome, designated murine AIDS (MAIDS), that has many of the immune abnormalities found in HIV infection. Retrovirus-infected C57BL/6 mice were examined for their ability to resist the development of oral candidiasis from the carrier state established after a self-limiting acute infection and to clear a subsequent secondary inoculum of oral C. albicans. Most of the mice orally colonized with C. albicans and then inoculated with the retrovirus mixture maintained a low-level oral carriage of C. albicans, while 30% of coinfected mice developed recurring 2- to 3-week episodes of acute Candida proliferation, separated by transient recoveries to the carrier state. The frequencies of CD4+ and CD8+ lymphocytes were, respectively, unchanged and significantly decreased (P < 0.05) in both cervical lymph nodes and spleens of coinfected mice compared to the corresponding frequencies in C. albicans-carrying, virus-free, age-matched control animals. Secretion of gamma interferon by concanavalin A (ConA)-stimulated spleen cells from Candida-carrying, retrovirus-infected mice was significantly decreased (P < 0.05) compared to that of C. albicans-carrying, retrovirus-free mice, in accordance with known abnormalities associated with MAIDS. However, production of this cytokine by ConA-stimulated or unstimulated cervical lymph node cells from coinfected mice was enhanced compared to that of virus-free animals colonized with C. albicans. Acquired resistance to reinfection with C. albicans was maintained in retrovirus-infected mice and was associated with a mucosal recruitment of CD8+ cells not observed in control mice. These results suggest that alterations in mucosal immunity which occur in MAIDS differ substantially from defects observed at other sites and that surrogate epithelial defense mechanisms may function locally to limit Candida proliferation.

Full Text

The Full Text of this article is available as a PDF (420.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arendorf T. M., Walker D. M. The prevalence and intra-oral distribution of Candida albicans in man. Arch Oral Biol. 1980;25(1):1–10. doi: 10.1016/0003-9969(80)90147-8. [DOI] [PubMed] [Google Scholar]
  2. Ascher M. S., Sheppard H. W. AIDS as immune system activation: a model for pathogenesis. Clin Exp Immunol. 1988 Aug;73(2):165–167. [PMC free article] [PubMed] [Google Scholar]
  3. Ashman R. B., Papadimitriou J. M. Production and function of cytokines in natural and acquired immunity to Candida albicans infection. Microbiol Rev. 1995 Dec;59(4):646–672. doi: 10.1128/mr.59.4.646-672.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aziz D. C., Hanna Z., Jolicoeur P. Severe immunodeficiency disease induced by a defective murine leukaemia virus. Nature. 1989 Apr 6;338(6215):505–508. doi: 10.1038/338505a0. [DOI] [PubMed] [Google Scholar]
  5. Balish E., Filutowicz H., Oberley T. D. Correlates of cell-mediated immunity in Candida albicans-colonized gnotobiotic mice. Infect Immun. 1990 Jan;58(1):107–113. doi: 10.1128/iai.58.1.107-113.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Balish E., Jensen J., Warner T., Brekke J., Leonard B. Mucosal and disseminated candidiasis in gnotobiotic SCID mice. J Med Vet Mycol. 1993;31(2):143–154. doi: 10.1080/02681219380000161. [DOI] [PubMed] [Google Scholar]
  7. Bentin J., Tsoukas C. D., McCutchan J. A., Spector S. A., Richman D. D., Vaughan J. H. Impairment in T-lymphocyte responses during early infection with the human immunodeficiency virus. J Clin Immunol. 1989 Mar;9(2):159–168. doi: 10.1007/BF00916944. [DOI] [PubMed] [Google Scholar]
  8. Buller R. M., Yetter R. A., Fredrickson T. N., Morse H. C., 3rd Abrogation of resistance to severe mousepox in C57BL/6 mice infected with LP-BM5 murine leukemia viruses. J Virol. 1987 Feb;61(2):383–387. doi: 10.1128/jvi.61.2.383-387.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cantorna M. T., Balish E. Mucosal and systemic candidiasis in congenitally immunodeficient mice. Infect Immun. 1990 Apr;58(4):1093–1100. doi: 10.1128/iai.58.4.1093-1100.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cantorna M. T., Balish E. Role of CD4+ lymphocytes in resistance to mucosal candidiasis. Infect Immun. 1991 Jul;59(7):2447–2455. doi: 10.1128/iai.59.7.2447-2455.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cenci E., Mencacci A., Spaccapelo R., Tonnetti L., Mosci P., Enssle K. H., Puccetti P., Romani L., Bistoni F. T helper cell type 1 (Th1)- and Th2-like responses are present in mice with gastric candidiasis but protective immunity is associated with Th1 development. J Infect Dis. 1995 May;171(5):1279–1288. doi: 10.1093/infdis/171.5.1279. [DOI] [PubMed] [Google Scholar]
  12. Chakir J., Côté L., Coulombe C., Deslauriers N. Differential pattern of infection and immune response during experimental oral candidiasis in BALB/c and DBA/2 (H-2d) mice. Oral Microbiol Immunol. 1994 Apr;9(2):88–94. doi: 10.1111/j.1399-302x.1994.tb00040.x. [DOI] [PubMed] [Google Scholar]
  13. Christmas S. E., Meager A. Production of interferon-gamma and tumour necrosis factor-alpha by human T-cell clones expressing different forms of the gamma delta receptor. Immunology. 1990 Dec;71(4):486–492. [PMC free article] [PubMed] [Google Scholar]
  14. Clerici M., Shearer G. M. A TH1-->TH2 switch is a critical step in the etiology of HIV infection. Immunol Today. 1993 Mar;14(3):107–111. doi: 10.1016/0167-5699(93)90208-3. [DOI] [PubMed] [Google Scholar]
  15. Cole G. T., Saha K., Seshan K. R., Lynn K. T., Franco M., Wong P. K. Retrovirus-induced immunodeficiency in mice exacerbates gastrointestinal candidiasis. Infect Immun. 1992 Oct;60(10):4168–4178. doi: 10.1128/iai.60.10.4168-4178.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Deslauriers N., Coulombe C., Carré B., Goulet J. P. Topical application of a corticosteroid destabilizes the host-parasite relationship in an experimental model of the oral carrier state of Candida albicans. FEMS Immunol Med Microbiol. 1995 Mar;11(1):45–55. doi: 10.1111/j.1574-695X.1995.tb00077.x. [DOI] [PubMed] [Google Scholar]
  17. Dodd C. L., Greenspan D., Katz M. H., Westenhouse J. L., Feigal D. W., Greenspan J. S. Oral candidiasis in HIV infection: pseudomembranous and erythematous candidiasis show similar rates of progression to AIDS. AIDS. 1991 Nov;5(11):1339–1343. [PubMed] [Google Scholar]
  18. Dull J. S., Sen P., Raffanti S., Middleton J. R. Oral candidiasis as a marker of acute retroviral illness. South Med J. 1991 Jun;84(6):733-5, 739. doi: 10.1097/00007611-199106000-00014. [DOI] [PubMed] [Google Scholar]
  19. Dupont B., Denning D. W., Marriott D., Sugar A., Viviani M. A., Sirisanthana T. Mycoses in AIDS patients. J Med Vet Mycol. 1994;32 (Suppl 1):65–77. doi: 10.1080/02681219480000731. [DOI] [PubMed] [Google Scholar]
  20. Fauci A. S. Multifactorial nature of human immunodeficiency virus disease: implications for therapy. Science. 1993 Nov 12;262(5136):1011–1018. doi: 10.1126/science.8235617. [DOI] [PubMed] [Google Scholar]
  21. Fong T. A., Mosmann T. R. Alloreactive murine CD8+ T cell clones secrete the Th1 pattern of cytokines. J Immunol. 1990 Mar 1;144(5):1744–1752. [PubMed] [Google Scholar]
  22. Fortier C., Barbeau J., Deslauriers N. Mast cells in the murine oral mucosa are of the connective tissue-type. Reg Immunol. 1990 Jan-Feb;3(1):35–41. [PubMed] [Google Scholar]
  23. Gazzinelli R. T., Hartley J. W., Fredrickson T. N., Chattopadhyay S. K., Sher A., Morse H. C., 3rd Opportunistic infections and retrovirus-induced immunodeficiency: studies of acute and chronic infections with Toxoplasma gondii in mice infected with LP-BM5 murine leukemia viruses. Infect Immun. 1992 Oct;60(10):4394–4401. doi: 10.1128/iai.60.10.4394-4401.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Gazzinelli R. T., Makino M., Chattopadhyay S. K., Snapper C. M., Sher A., Hügin A. W., Morse H. C., 3rd CD4+ subset regulation in viral infection. Preferential activation of Th2 cells during progression of retrovirus-induced immunodeficiency in mice. J Immunol. 1992 Jan 1;148(1):182–188. [PubMed] [Google Scholar]
  25. Hartley J. W., Fredrickson T. N., Yetter R. A., Makino M., Morse H. C., 3rd Retrovirus-induced murine acquired immunodeficiency syndrome: natural history of infection and differing susceptibility of inbred mouse strains. J Virol. 1989 Mar;63(3):1223–1231. doi: 10.1128/jvi.63.3.1223-1231.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hügin A. W., Cerny A., Morse H. C., 3rd Mice with an acquired immunodeficiency (MAIDS) develop a persistent infection after injection with Listeria monocytogenes. Cell Immunol. 1994 Apr 15;155(1):246–252. doi: 10.1006/cimm.1994.1117. [DOI] [PubMed] [Google Scholar]
  27. Jensen J., Warner T., Balish E. Resistance of SCID mice to Candida albicans administered intravenously or colonizing the gut: role of polymorphonuclear leukocytes and macrophages. J Infect Dis. 1993 Apr;167(4):912–919. doi: 10.1093/infdis/167.4.912. [DOI] [PubMed] [Google Scholar]
  28. Jensen J., Warner T., Balish E. The role of phagocytic cells in resistance to disseminated candidiasis in granulocytopenic mice. J Infect Dis. 1994 Oct;170(4):900–905. doi: 10.1093/infdis/170.4.900. [DOI] [PubMed] [Google Scholar]
  29. Jolicoeur P. Murine acquired immunodeficiency syndrome (MAIDS): an animal model to study the AIDS pathogenesis. FASEB J. 1991 Jul;5(10):2398–2405. doi: 10.1096/fasebj.5.10.2065888. [DOI] [PubMed] [Google Scholar]
  30. Jones-Carson J., Vazquez-Torres A., van der Heyde H. C., Warner T., Wagner R. D., Balish E. Gamma delta T cell-induced nitric oxide production enhances resistance to mucosal candidiasis. Nat Med. 1995 Jun;1(6):552–557. doi: 10.1038/nm0695-552. [DOI] [PubMed] [Google Scholar]
  31. Klinman D. M., Morse H. C., 3rd Characteristics of B cell proliferation and activation in murine AIDS. J Immunol. 1989 Feb 15;142(4):1144–1149. [PubMed] [Google Scholar]
  32. Makino M., Winkler D. F., Wunderlich J., Hartley J. W., Morse H. C., Holmes K. L. High expression of NK-1.1 antigen is induced by infection with murine AIDS virus. Immunology. 1993 Oct;80(2):319–325. [PMC free article] [PubMed] [Google Scholar]
  33. Mosier D. E. Animal models for retrovirus-induced immunodeficiency disease. Immunol Invest. 1986 May;15(3):233–261. doi: 10.3109/08820138609026687. [DOI] [PubMed] [Google Scholar]
  34. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  35. Muralidhar G., Koch S., Haas M., Swain S. L. CD4 T cells in murine acquired immunodeficiency syndrome: polyclonal progression to anergy. J Exp Med. 1992 Jun 1;175(6):1589–1599. doi: 10.1084/jem.175.6.1589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Orme I. M., Furney S. K., Roberts A. D. Dissemination of enteric Mycobacterium avium infections in mice rendered immunodeficient by thymectomy and CD4 depletion or by prior infection with murine AIDS retroviruses. Infect Immun. 1992 Nov;60(11):4747–4753. doi: 10.1128/iai.60.11.4747-4753.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pantaleo G., Fauci A. S. Tracking HIV during disease progression. Curr Opin Immunol. 1994 Aug;6(4):600–604. doi: 10.1016/0952-7915(94)90148-1. [DOI] [PubMed] [Google Scholar]
  38. Pitha P. M., Biegel D., Yetter R. A., Morse H. C., 3rd Abnormal regulation of IFN-alpha, -beta, and -gamma expression in MAIDS, a murine retrovirus-induced immunodeficiency syndrome. J Immunol. 1988 Nov 15;141(10):3611–3616. [PubMed] [Google Scholar]
  39. Romagnani S., Maggi E. Th1 versus Th2 responses in AIDS. Curr Opin Immunol. 1994 Aug;6(4):616–622. doi: 10.1016/0952-7915(94)90150-3. [DOI] [PubMed] [Google Scholar]
  40. Romani L., Mocci S., Bietta C., Lanfaloni L., Puccetti P., Bistoni F. Th1 and Th2 cytokine secretion patterns in murine candidiasis: association of Th1 responses with acquired resistance. Infect Immun. 1991 Dec;59(12):4647–4654. doi: 10.1128/iai.59.12.4647-4654.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Royce R. A., Luckmann R. S., Fusaro R. E., Winkelstein W., Jr The natural history of HIV-1 infection: staging classifications of disease. AIDS. 1991 Apr;5(4):355–364. doi: 10.1097/00002030-199104000-00001. [DOI] [PubMed] [Google Scholar]
  42. Saah A. J., Muñoz A., Kuo V., Fox R., Kaslow R. A., Phair J. P., Rinaldo C. R., Jr, Detels R., Polk B. F. Predictors of the risk of development of acquired immunodeficiency syndrome within 24 months among gay men seropositive for human immunodeficiency virus type 1: a report from the Multicenter AIDS Cohort Study. Am J Epidemiol. 1992 May 15;135(10):1147–1155. doi: 10.1093/oxfordjournals.aje.a116215. [DOI] [PubMed] [Google Scholar]
  43. Sher A., Coffman R. L. Regulation of immunity to parasites by T cells and T cell-derived cytokines. Annu Rev Immunol. 1992;10:385–409. doi: 10.1146/annurev.iy.10.040192.002125. [DOI] [PubMed] [Google Scholar]
  44. van Noesel C. J., Gruters R. A., Terpstra F. G., Schellekens P. T., van Lier R. A., Miedema F. Functional and phenotypic evidence for a selective loss of memory T cells in asymptomatic human immunodeficiency virus-infected men. J Clin Invest. 1990 Jul;86(1):293–299. doi: 10.1172/JCI114698. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES