Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Feb;65(2):685–691. doi: 10.1128/iai.65.2.685-691.1997

gamma-Glutamyltransferase from the outer cell envelope of Treponema denticola ATCC 35405.

P L Mäkinen 1, K K Mäkinen 1
PMCID: PMC176114  PMID: 9009331

Abstract

The human oral spirochete Treponema denticola ATCC 35405 was shown to exhibit relatively high enzyme activity toward the gamma-glutamyl amide bond present in N-gamma-L-glutamyl-4-nitroaniline. The enzyme responsible for this catalysis (gamma-glutamyltransferase [GGT]; EC 2.3.2.2) was purified by means of fast protein liquid chromatography to two sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)-pure forms from a mild (0.1%) Triton X-100 extract of washed cells. The GGT was studied primarily with regard to its hydrolytic activity by using N-gamma-L-glutamyl-4-nitroaniline as a substrate, although the GGT was shown to catalyze transpeptidation reactions. The high-molecular-mass form of the GGT gave a value of about 213 kDa by SDS-PAGE when heat treatment was omitted and one of 26 kDa after heat treatment; mass spectrometry gave a value of 26.877. The larger form may represent an aggregate with nonprotein structures (possibly of a carbohydrate nature). The preliminary N-terminal sequence of the GGT is MKKPLIGITGSXLYETSQXXF. The enzyme was highly active on glutathione, transferring its Glu residue either to a water molecule or to the Gly-L-Leu dipeptide. The GGT stability was absolutely dependent on the presence of free thiol(s), while no evidence of metalloenzyme nature was obtained. The proposed location of the GGT in the outer cell envelope and its high activity on glutathione, a major nonprotein thiol present in virtually all cells, suggest that the GGT may play a role in the propagation of T. denticola within inflamed periodontal tissues.

Full Text

The Full Text of this article is available as a PDF (230.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison R. D. gamma-Glutamyl transpeptidase: kinetics and mechanism. Methods Enzymol. 1985;113:419–437. doi: 10.1016/s0076-6879(85)13054-5. [DOI] [PubMed] [Google Scholar]
  2. Dvoráková L., Lisý V., Stastný F. Developmental changes in the activity of membrane-bound gamma-glutamyl transpeptidase and in the sialylation of synaptosomal membranes from the chick embryonic brain. Eur J Biochem. 1992 Feb 1;203(3):669–672. doi: 10.1111/j.1432-1033.1992.tb16597.x. [DOI] [PubMed] [Google Scholar]
  3. Elce J. S. Active-site amino acid residues in gamma-glutamyltransferase and the nature of the gamma-glutamyl-enzyme bond. Biochem J. 1980 Feb 1;185(2):473–481. doi: 10.1042/bj1850473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fushiki T., Iwami K., Yasumoto K., Iwai K. Evidence for an essential arginyl residue in bovine milk gamma-glutamyltransferase. J Biochem. 1983 Mar;93(3):795–800. doi: 10.1093/jb/93.3.795. [DOI] [PubMed] [Google Scholar]
  5. Gololobov MYu, Bateman R. C., Jr gamma-Glutamyltranspeptidase-catalysed acyl-transfer to the added acceptor does not proceed via the ping-pong mechanism. Biochem J. 1994 Dec 15;304(Pt 3):869–876. doi: 10.1042/bj3040869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Graber R., Losa G. A. Changes in the activities of signal transduction and transport membrane enzymes in CEM lymphoblastoid cells by glucocorticoid-induced apoptosis. Anal Cell Pathol. 1995 Mar;8(2):159–175. [PubMed] [Google Scholar]
  7. Haapasalo M., Singh U., McBride B. C., Uitto V. J. Sulfhydryl-dependent attachment of Treponema denticola to laminin and other proteins. Infect Immun. 1991 Nov;59(11):4230–4237. doi: 10.1128/iai.59.11.4230-4237.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hunkapiller M. W., Hewick R. M., Dreyer W. J., Hood L. E. High-sensitivity sequencing with a gas-phase sequenator. Methods Enzymol. 1983;91:399–413. doi: 10.1016/s0076-6879(83)91038-8. [DOI] [PubMed] [Google Scholar]
  9. Ikeda Y., Fujii J., Taniguchi N. Significance of Arg-107 and Glu-108 in the catalytic mechanism of human gamma-glutamyl transpeptidase. Identification by site-directed mutagenesis. J Biol Chem. 1993 Feb 25;268(6):3980–3985. [PubMed] [Google Scholar]
  10. Karshikoff A., Reinemer P., Huber R., Ladenstein R. Electrostatic evidence for the activation of the glutathione thiol by Tyr7 in pi-class glutathione transferases. Eur J Biochem. 1993 Aug 1;215(3):663–670. doi: 10.1111/j.1432-1033.1993.tb18077.x. [DOI] [PubMed] [Google Scholar]
  11. Laperche Y., Bulle F., Aissani T., Chobert M. N., Aggerbeck M., Hanoune J., Guellaën G. Molecular cloning and nucleotide sequence of rat kidney gamma-glutamyl transpeptidase cDNA. Proc Natl Acad Sci U S A. 1986 Feb;83(4):937–941. doi: 10.1073/pnas.83.4.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Loesche W. J. Bacterial mediators in periodontal disease. Clin Infect Dis. 1993 Jun;16 (Suppl 4):S203–S210. doi: 10.1093/clinids/16.supplement_4.s203. [DOI] [PubMed] [Google Scholar]
  13. Loesche W. J., Giordano J. R., Hujoel P., Schwarcz J., Smith B. A. Metronidazole in periodontitis: reduced need for surgery. J Clin Periodontol. 1992 Feb;19(2):103–112. doi: 10.1111/j.1600-051x.1992.tb00448.x. [DOI] [PubMed] [Google Scholar]
  14. Loesche W. J. The role of spirochetes in periodontal disease. Adv Dent Res. 1988 Nov;2(2):275–283. doi: 10.1177/08959374880020021201. [DOI] [PubMed] [Google Scholar]
  15. Milbauer R., Grossowicz N. Gamma-glutamyl transfer reactions in bacteria. J Gen Microbiol. 1965 Nov;41(2):185–194. doi: 10.1099/00221287-41-2-185. [DOI] [PubMed] [Google Scholar]
  16. Miles E. W. Modification of histidyl residues in proteins by diethylpyrocarbonate. Methods Enzymol. 1977;47:431–442. doi: 10.1016/0076-6879(77)47043-5. [DOI] [PubMed] [Google Scholar]
  17. Mäkinen K. K., Chen C. Y., Mäkinen P. L. Proline iminopeptidase from the outer cell envelope of the human oral spirochete Treponema denticola ATCC 35405. Infect Immun. 1996 Mar;64(3):702–708. doi: 10.1128/iai.64.3.702-708.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mäkinen K. K. Inhibition by bacitracin of some hydrolytic enzymes. Int J Protein Res. 1972;4(1):21–28. doi: 10.1111/j.1399-3011.1972.tb03394.x. [DOI] [PubMed] [Google Scholar]
  19. Mäkinen K. K., Mäkinen P. L., Loesche W. J., Syed S. A. Purification and general properties of an oligopeptidase from Treponema denticola ATCC 35405--a human oral spirochete. Arch Biochem Biophys. 1995 Feb 1;316(2):689–698. doi: 10.1006/abbi.1995.1092. [DOI] [PubMed] [Google Scholar]
  20. Mäkinen K. K., Mäkinen P. L., Syed S. A. Purification and substrate specificity of an endopeptidase from the human oral spirochete Treponema denticola ATCC 35405, active on furylacryloyl-Leu-Gly-Pro-Ala and bradykinin. J Biol Chem. 1992 Jul 15;267(20):14285–14293. [PubMed] [Google Scholar]
  21. Mäkinen K. K., Mäkinen P. L. The peptidolytic capacity of the spirochete system. Med Microbiol Immunol. 1996 May;185(1):1–10. doi: 10.1007/s004300050008. [DOI] [PubMed] [Google Scholar]
  22. Mäkinen K. K., Mäkinen P. L., Wilkes S. H., Bayliss M. E., Prescott J. M. Photochemical inactivation of Aeromonas aminopeptidase by 2,3-butanedione. J Biol Chem. 1982 Feb 25;257(4):1765–1772. [PubMed] [Google Scholar]
  23. Mäkinen P. L., Mäkinen K. K., Syed S. A. An endo-acting proline-specific oligopeptidase from Treponema denticola ATCC 35405: evidence of hydrolysis of human bioactive peptides. Infect Immun. 1994 Nov;62(11):4938–4947. doi: 10.1128/iai.62.11.4938-4947.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nakayama R., Kumagai H., Tochikura T. Leakage of glutathione from bacterial cells caused by inhibition of gamma-glutamyltranspeptidase. Appl Environ Microbiol. 1984 Apr;47(4):653–657. doi: 10.1128/aem.47.4.653-657.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nakayama R., Kumagai H., Tochikura T. Purification and properties of gamma-glutamyltranspeptidase from Proteus mirabilis. J Bacteriol. 1984 Oct;160(1):341–346. doi: 10.1128/jb.160.1.341-346.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nakayama R., Kumagai H., Tochikura T. gamma-Glutamyltranspeptidase from Proteus mirabilis: localization and activation by phospholipids. J Bacteriol. 1984 Dec;160(3):1031–1036. doi: 10.1128/jb.160.3.1031-1036.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ohta K., Makinen K. K., Loesche W. J. Purification and characterization of an enzyme produced by Treponema denticola capable of hydrolyzing synthetic trypsin substrates. Infect Immun. 1986 Jul;53(1):213–220. doi: 10.1128/iai.53.1.213-220.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pougeois R., Satre M., Vignais P. V. N-Ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, a new inhibitor of the mitochondrial F1-ATPase. Biochemistry. 1978 Jul 25;17(15):3018–3023. doi: 10.1021/bi00608a013. [DOI] [PubMed] [Google Scholar]
  29. Riviere G. R., Elliot K. S., Adams D. F., Simonson L. G., Forgas L. B., Nilius A. M., Lukehart S. A. Relative proportions of pathogen-related oral spirochetes (PROS) and Treponema denticola in supragingival and subgingival plaque from patients with periodontitis. J Periodontol. 1992 Feb;63(2):131–136. doi: 10.1902/jop.1992.63.2.131. [DOI] [PubMed] [Google Scholar]
  30. Saccomani G., Barcellona M. L., Sachs G. Reactivity of gastric (H+ + K+)-ATPase to N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline. J Biol Chem. 1981 Dec 10;256(23):12405–12410. [PubMed] [Google Scholar]
  31. Sanderink G. J., Artur Y., Siest G. Human aminopeptidases: a review of the literature. J Clin Chem Clin Biochem. 1988 Dec;26(12):795–807. doi: 10.1515/cclm.1988.26.12.795. [DOI] [PubMed] [Google Scholar]
  32. Schasteen C. S., Curthoys N. P., Reed D. J. The binding mechanism of glutathione and the anti-tumor drug L-(alpha S, 5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125;NSC-163501) to gamma-glutamyltransferase. Biochem Biophys Res Commun. 1983 Apr 29;112(2):564–570. doi: 10.1016/0006-291x(83)91501-2. [DOI] [PubMed] [Google Scholar]
  33. Smith T. K., Meister A. Active deglycosylated mammalian gamma-glutamyl transpeptidase. FASEB J. 1994 Jun;8(9):661–664. doi: 10.1096/fasebj.8.9.7911768. [DOI] [PubMed] [Google Scholar]
  34. Sokolovsky M., Riordan J. F., Vallee B. L. Tetranitromethane. A reagent for the nitration of tyrosyl residues in proteins. Biochemistry. 1966 Nov;5(11):3582–3589. doi: 10.1021/bi00875a029. [DOI] [PubMed] [Google Scholar]
  35. Song L., Ye M., Troyanovskaya M., Wilk E., Wilk S., Healy D. P. Rat kidney glutamyl aminopeptidase (aminopeptidase A): molecular identity and cellular localization. Am J Physiol. 1994 Oct;267(4 Pt 2):F546–F557. doi: 10.1152/ajprenal.1994.267.4.F546. [DOI] [PubMed] [Google Scholar]
  36. Stole E., Meister A. Interaction of gamma-glutamyl transpeptidase with glutathione involves specific arginine and lysine residues of the heavy subunit. J Biol Chem. 1991 Sep 25;266(27):17850–17857. [PubMed] [Google Scholar]
  37. Suzuki H., Kumagai H., Echigo T., Tochikura T. DNA sequence of the Escherichia coli K-12 gamma-glutamyltranspeptidase gene, ggt. J Bacteriol. 1989 Sep;171(9):5169–5172. doi: 10.1128/jb.171.9.5169-5172.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Suzuki H., Kumagai H., Tochikura T. gamma-Glutamyltranspeptidase from Escherichia coli K-12: formation and localization. J Bacteriol. 1986 Dec;168(3):1332–1335. doi: 10.1128/jb.168.3.1332-1335.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Szewczuk A., Connell G. E. The reaction of iodoacetamide with the active center of gamma-glutamyl transpeptidase. Biochim Biophys Acta. 1965 Aug 24;105(2):352–367. doi: 10.1016/s0926-6593(65)80159-x. [DOI] [PubMed] [Google Scholar]
  40. Szewczuk A., Mulczyk M. Studies on gamma-glutamyl peptidase from Pseudomonas aeruginosa. Arch Immunol Ther Exp (Warsz) 1970;18(5):515–526. [PubMed] [Google Scholar]
  41. TALALAY P. S. Glutathione breakdown and transpeptidation reactions in Proteus vulgaris. Nature. 1954 Sep 11;174(4428):516–517. doi: 10.1038/174516b0. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES