Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Feb;65(2):806–810. doi: 10.1128/iai.65.2.806-810.1997

Decreased intracellular survival of an fkpA mutant of Salmonella typhimurium Copenhagen.

S M Horne 1, T J Kottom 1, L K Nolan 1, K D Young 1
PMCID: PMC176130  PMID: 9009347

Abstract

The fkpA gene of Salmonella typhimurium encodes a protein similar to the macrophage infectivity potentiator (Mip) proteins of Legionella pneumophila and Chlamydia trachomatis. Because Mip proteins enhance the ability of these intracellular pathogens to survive within macrophages and epithelial cells, we tested whether the product of the fkpA gene would have the same effect on the intracellular growth of a virulent strain of S. typhimurium. By a series of P22 transductions, the fkpA gene of S. typhimurium Copenhagen was replaced with the inactive fkpA1::omega-Cm gene from Escherichia coli, creating the mutant S. typhimurium KY32H1. The Copenhagen and KY32H1 strains were equally able to enter Caco-2 cells (an epithelial cell line) and J774.A1 cells (a macrophage-like cell line). However, compared to the parent, the fkpA mutant survived less well in both types of cells during the first 6 h after infection. The number of viable intracellular S. typhimurium Copenhagen bacteria remained constant 6 h after infection of Caco-2 cells, but the viability of S. typhimurium KY32H1 decreased significantly by 4 h postinfection. The fkpA mutant also exhibited a reduced ability to survive intracellularly in J774.A1 cells as little as 2 h postinfection. Complementation of the fkpA mutation by a plasmid-borne wild-type fkpA gene from E. coli restored the ability of S. typhimurium KY32H1 to grow normally in J774.A1 cells. Thus, expression of the mip-like fkpA gene confers on S. typhimurium Copenhagen properties analogous to those mediated by the Mip proteins in other intracellular pathogens, suggesting that this mechanism may play a role in the virulence and/or intracellular growth of numerous bacteria.

Full Text

The Full Text of this article is available as a PDF (226.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abshire K. Z., Neidhardt F. C. Growth rate paradox of Salmonella typhimurium within host macrophages. J Bacteriol. 1993 Jun;175(12):3744–3748. doi: 10.1128/jb.175.12.3744-3748.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson R. P., Roth J. R. Tandem chromosomal duplications in Salmonella typhimurium: fusion of histidine genes to novel promoters. J Mol Biol. 1978 Feb 15;119(1):147–166. doi: 10.1016/0022-2836(78)90274-7. [DOI] [PubMed] [Google Scholar]
  3. Buchmeier N. A., Heffron F. Intracellular survival of wild-type Salmonella typhimurium and macrophage-sensitive mutants in diverse populations of macrophages. Infect Immun. 1989 Jan;57(1):1–7. doi: 10.1128/iai.57.1.1-7.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burland V., Plunkett G., 3rd, Sofia H. J., Daniels D. L., Blattner F. R. Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92.8 through 100 minutes. Nucleic Acids Res. 1995 Jun 25;23(12):2105–2119. doi: 10.1093/nar/23.12.2105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cianciotto N. P., Eisenstein B. I., Mody C. H., Engleberg N. C. A mutation in the mip gene results in an attenuation of Legionella pneumophila virulence. J Infect Dis. 1990 Jul;162(1):121–126. doi: 10.1093/infdis/162.1.121. [DOI] [PubMed] [Google Scholar]
  6. Cianciotto N. P., Eisenstein B. I., Mody C. H., Toews G. B., Engleberg N. C. A Legionella pneumophila gene encoding a species-specific surface protein potentiates initiation of intracellular infection. Infect Immun. 1989 Apr;57(4):1255–1262. doi: 10.1128/iai.57.4.1255-1262.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cianciotto N. P., Fields B. S. Legionella pneumophila mip gene potentiates intracellular infection of protozoa and human macrophages. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5188–5191. doi: 10.1073/pnas.89.11.5188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Elliott T. Cloning, genetic characterization, and nucleotide sequence of the hemA-prfA operon of Salmonella typhimurium. J Bacteriol. 1989 Jul;171(7):3948–3960. doi: 10.1128/jb.171.7.3948-3960.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Engleberg N. C., Carter C., Weber D. R., Cianciotto N. P., Eisenstein B. I. DNA sequence of mip, a Legionella pneumophila gene associated with macrophage infectivity. Infect Immun. 1989 Apr;57(4):1263–1270. doi: 10.1128/iai.57.4.1263-1270.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  11. Fields P. I., Swanson R. V., Haidaris C. G., Heffron F. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5189–5193. doi: 10.1073/pnas.83.14.5189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Finlay B. B., Falkow S. Salmonella as an intracellular parasite. Mol Microbiol. 1989 Dec;3(12):1833–1841. doi: 10.1111/j.1365-2958.1989.tb00170.x. [DOI] [PubMed] [Google Scholar]
  13. Finlay B. B., Falkow S. Salmonella interactions with polarized human intestinal Caco-2 epithelial cells. J Infect Dis. 1990 Nov;162(5):1096–1106. doi: 10.1093/infdis/162.5.1096. [DOI] [PubMed] [Google Scholar]
  14. Fischer G., Bang H., Ludwig B., Mann K., Hacker J. Mip protein of Legionella pneumophila exhibits peptidyl-prolyl-cis/trans isomerase (PPlase) activity. Mol Microbiol. 1992 May;6(10):1375–1383. doi: 10.1111/j.1365-2958.1992.tb00858.x. [DOI] [PubMed] [Google Scholar]
  15. Gahring L. C., Heffron F., Finlay B. B., Falkow S. Invasion and replication of Salmonella typhimurium in animal cells. Infect Immun. 1990 Feb;58(2):443–448. doi: 10.1128/iai.58.2.443-448.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Galán J. E. Interactions of bacteria with non-phagocytic cells. Curr Opin Immunol. 1994 Aug;6(4):590–595. doi: 10.1016/0952-7915(94)90146-5. [DOI] [PubMed] [Google Scholar]
  17. Groisman E. A., Ochman H. How to become a pathogen. Trends Microbiol. 1994 Aug;2(8):289–294. doi: 10.1016/0966-842x(94)90006-x. [DOI] [PubMed] [Google Scholar]
  18. Groisman E. A., Saier M. H., Jr Salmonella virulence: new clues to intramacrophage survival. Trends Biochem Sci. 1990 Jan;15(1):30–33. doi: 10.1016/0968-0004(90)90128-x. [DOI] [PubMed] [Google Scholar]
  19. Hacker J., Fischer G. Immunophilins: structure-function relationship and possible role in microbial pathogenicity. Mol Microbiol. 1993 Nov;10(3):445–456. doi: 10.1111/j.1365-2958.1993.tb00917.x. [DOI] [PubMed] [Google Scholar]
  20. Horne S. M., Young K. D. Escherichia coli and other species of the Enterobacteriaceae encode a protein similar to the family of Mip-like FK506-binding proteins. Arch Microbiol. 1995 May;163(5):357–365. doi: 10.1007/BF00404209. [DOI] [PubMed] [Google Scholar]
  21. Kusters J. G., Mulders-Kremers G. A., van Doornik C. E., van der Zeijst B. A. Effects of multiplicity of infection, bacterial protein synthesis, and growth phase on adhesion to and invasion of human cell lines by Salmonella typhimurium. Infect Immun. 1993 Dec;61(12):5013–5020. doi: 10.1128/iai.61.12.5013-5020.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Leung K. Y., Finlay B. B. Intracellular replication is essential for the virulence of Salmonella typhimurium. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11470–11474. doi: 10.1073/pnas.88.24.11470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Libby S. J., Goebel W., Ludwig A., Buchmeier N., Bowe F., Fang F. C., Guiney D. G., Songer J. G., Heffron F. A cytolysin encoded by Salmonella is required for survival within macrophages. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):489–493. doi: 10.1073/pnas.91.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lissner C. R., Swanson R. N., O'Brien A. D. Genetic control of the innate resistance of mice to Salmonella typhimurium: expression of the Ity gene in peritoneal and splenic macrophages isolated in vitro. J Immunol. 1983 Dec;131(6):3006–3013. [PubMed] [Google Scholar]
  25. Lundemose A. G., Kay J. E., Pearce J. H. Chlamydia trachomatis Mip-like protein has peptidyl-prolyl cis/trans isomerase activity that is inhibited by FK506 and rapamycin and is implicated in initiation of chlamydial infection. Mol Microbiol. 1993 Mar;7(5):777–783. doi: 10.1111/j.1365-2958.1993.tb01168.x. [DOI] [PubMed] [Google Scholar]
  26. Lundemose A. G., Rouch D. A., Birkelund S., Christiansen G., Pearce J. H. Chlamydia trachomatis Mip-like protein. Mol Microbiol. 1992 Sep;6(17):2539–2548. doi: 10.1111/j.1365-2958.1992.tb01430.x. [DOI] [PubMed] [Google Scholar]
  27. Missiakas D., Betton J. M., Raina S. New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol Microbiol. 1996 Aug;21(4):871–884. doi: 10.1046/j.1365-2958.1996.561412.x. [DOI] [PubMed] [Google Scholar]
  28. Moro A., Ruiz-Cabello F., Fernández-Cano A., Stock R. P., González A. Secretion by Trypanosoma cruzi of a peptidyl-prolyl cis-trans isomerase involved in cell infection. EMBO J. 1995 Jun 1;14(11):2483–2490. doi: 10.1002/j.1460-2075.1995.tb07245.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Neal B. L., Brown P. K., Reeves P. R. Use of Salmonella phage P22 for transduction in Escherichia coli. J Bacteriol. 1993 Nov;175(21):7115–7118. doi: 10.1128/jb.175.21.7115-7118.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nolan L. K., Wooley R. E., Brown J., Payeur J. B. Comparison of phenotypic characteristics of Salmonella spp isolated from healthy and ill (infected) chickens. Am J Vet Res. 1991 Sep;52(9):1512–1517. [PubMed] [Google Scholar]
  31. Rahfeld J. U., Rücknagel K. P., Stoller G., Horne S. M., Schierhorn A., Young K. D., Fischer G. Isolation and amino acid sequence of a new 22-kDa FKBP-like peptidyl-prolyl cis/trans-isomerase of Escherichia coli. Similarity to Mip-like proteins of pathogenic bacteria. J Biol Chem. 1996 Sep 6;271(36):22130–22138. doi: 10.1074/jbc.271.36.22130. [DOI] [PubMed] [Google Scholar]
  32. Ralph P., Prichard J., Cohn M. Reticulum cell sarcoma: an effector cell in antibody-dependent cell-mediated immunity. J Immunol. 1975 Feb;114(2 Pt 2):898–905. [PubMed] [Google Scholar]
  33. Rayssiguier C., Thaler D. S., Radman M. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature. 1989 Nov 23;342(6248):396–401. doi: 10.1038/342396a0. [DOI] [PubMed] [Google Scholar]
  34. Schmid F. X., Mayr L. M., Mücke M., Schönbrunner E. R. Prolyl isomerases: role in protein folding. Adv Protein Chem. 1993;44:25–66. doi: 10.1016/s0065-3233(08)60563-x. [DOI] [PubMed] [Google Scholar]
  35. Schmieger H. Phage P22-mutants with increased or decreased transduction abilities. Mol Gen Genet. 1972;119(1):75–88. doi: 10.1007/BF00270447. [DOI] [PubMed] [Google Scholar]
  36. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES