Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1985 Jan;27(1):71–75. doi: 10.1128/aac.27.1.71

Susceptibility of enterococci to trimethoprim and trimethoprim-sulfamethoxazole.

S R Crider, S D Colby
PMCID: PMC176207  PMID: 3920958

Abstract

The in vitro activities of trimethoprim (TMP), alone and in combination with sulfamethoxazole (SMX), against 131 clinical isolates of enterococci, 126 Streptococcus faecalis isolates, and 5 Streptococcus faecium isolates were determined by a broth microdilution method with Mueller-Hinton broth that was substantially free of inhibitory substances. The geometric mean MIC of TMP for strains of S. faecalis was 0.164 micrograms/ml (range, 0.03 to 8 micrograms/ml), with a geometric mean MBC of 0.298 micrograms/ml (range, 0.063 to 8 micrograms/ml). Although all strains were resistant to the sulfonamide alone, the inhibitory and bactericidal activities of TMP against strains of S. faecalis were markedly potentiated when TMP was combined in a fixed ratio of 1:19 with SMX; the geometric mean MIC of TMP was reduced to 0.016 micrograms/ml (range, 0.002 to 0.25 micrograms/ml), with a geometric mean MBC of 0.031 micrograms/ml (range, 0.004 to 0.25 micrograms/ml). The combination had no synergistic effect against strains of S. faecium; the geometric mean MICs and MBCs of both agents were ca. 0.06 micrograms/ml. The MBC/MIC ratios for TMP and TMP-SMX were less than or equal to 16 for all 131 strains. MICs and MBCs for TMP-SMX were unchanged, and for TMP they decreased when performed in broth supplemented with 50% heat-inactivated pooled human serum. For TMP and TMP-SMX, the susceptibilities of isolates with high-level resistance to gentamicin or streptomycin were the same as those of isolates susceptible to less than or equal to 2,000 micrograms of aminoglycoside per ml. These results suggest that TMP-SMX and TMP alone could prove useful in the treatment of serious enterococcal infections, including infections by strains with high-level resistance to aminoglycosides.

Full text

PDF
71

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bach M. C., Finland M., Gold O., Wilcox C. Susceptibility of recently isolated pathogenic bacteria to trimethoprim and sulfamethoxazole separately and combined. J Infect Dis. 1973 Nov;128(Suppl):508–p. doi: 10.1093/infdis/128.supplement_3.s508. [DOI] [PubMed] [Google Scholar]
  2. Bushby S. R., Hitchings G. H. Trimethoprim, a sulphonamide potentiator. Br J Pharmacol Chemother. 1968 May;33(1):72–90. doi: 10.1111/j.1476-5381.1968.tb00475.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bushby S. R. Trimethoprim-sulfamethoxazole: in vitro microbiological aspects. J Infect Dis. 1973 Nov;128(Suppl):442–p. doi: 10.1093/infdis/128.supplement_3.s442. [DOI] [PubMed] [Google Scholar]
  4. Calderwood S. A., Wennersten C., Moellering R. C., Jr, Kunz L. J., Krogstad D. J. Resistance to six aminoglycosidic aminocyclitol antibiotics among enterococci: prevalence, evolution, and relationship to synergism with penicillin. Antimicrob Agents Chemother. 1977 Sep;12(3):401–405. doi: 10.1128/aac.12.3.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fass R. J. In vitro activity of ciprofloxacin (Bay o 9867). Antimicrob Agents Chemother. 1983 Oct;24(4):568–574. doi: 10.1128/aac.24.4.568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ferone R., Bushby S. R., Burchall J. J., Moore W. D., Smith D. Identification of Harper-Cawston factor as thymidine phosphorylase and removal from media of substances interfering with susceptibility testing to sulfonamides and diaminopyrimidines. Antimicrob Agents Chemother. 1975 Jan;7(1):91–98. doi: 10.1128/aac.7.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gallien R. Antibacterial action of trimethoprim-sulfamethoxazole. J Infect Dis. 1973 Nov;128(Suppl):486–p. doi: 10.1093/infdis/128.supplement_3.s486. [DOI] [PubMed] [Google Scholar]
  8. Goodhart G. L. In vivo v in vitro susceptibility of enterococcus to trimethoprim-sulfamethoxazole. A pitfall. JAMA. 1984 Nov 16;252(19):2748–2749. [PubMed] [Google Scholar]
  9. Grose W. E., Bodey G. P., Loo T. L. Clinical pharmacology of intravenously administered trimethoprim-sulfamethoxazole. Antimicrob Agents Chemother. 1979 Mar;15(3):447–451. doi: 10.1128/aac.15.3.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kaye D. Enterococci. Biologic and epidemiologic characteristics and in vitro susceptibility. Arch Intern Med. 1982 Oct 25;142(11):2006–2009. doi: 10.1001/archinte.142.11.2006. [DOI] [PubMed] [Google Scholar]
  11. Khan M. Y., Gruninger R. P., Nelson S. M., Klicker R. E. Comparative in vitro activity of norfloxacin (MK-0366) and ten other oral antimicrobial agents against urinary bacterial isolates. Antimicrob Agents Chemother. 1982 May;21(5):848–851. doi: 10.1128/aac.21.5.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Koch A. E., Burchall J. J. Reversal of the antimicrobial activity of trimethoprim by thymidine in commercially prepared media. Appl Microbiol. 1971 Nov;22(5):812–817. doi: 10.1128/am.22.5.812-817.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mederski-Samoraj B. D., Murray B. E. High-level resistance to gentamicin in clinical isolates of enterococci. J Infect Dis. 1983 Apr;147(4):751–757. doi: 10.1093/infdis/147.4.751. [DOI] [PubMed] [Google Scholar]
  14. Murray B. E., Tsao J., Panida J. Enterococci from Bangkok, Thailand, with high-level resistance to currently available aminoglycosides. Antimicrob Agents Chemother. 1983 Jun;23(6):799–802. doi: 10.1128/aac.23.6.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pierson C. L., Schaberg D. R., Fekety F. R., Jr, McClatchey K. D. In-vitro activity of Sch 29482, MK 0787, ceftriaxone and seven other antimicrobials against 840 separate clinical isolates. J Antimicrob Chemother. 1982 Feb;9 (Suppl 100):79–89. doi: 10.1093/jac/9.suppl_c.79. [DOI] [PubMed] [Google Scholar]
  16. Reller L. B., Stratton C. W. Serum dilution test for bactericidal activity. II. Standardization and correlation with antimicrobial assays and susceptibility tests. J Infect Dis. 1977 Aug;136(2):196–204. doi: 10.1093/infdis/136.2.196. [DOI] [PubMed] [Google Scholar]
  17. Sande M. A., Scheld W. M. Combination antibiotic therapy of bacterial endocarditis. Ann Intern Med. 1980 Mar;92(3):390–395. doi: 10.7326/0003-4819-92-3-390. [DOI] [PubMed] [Google Scholar]
  18. Taylor P. C., Schoenknecht F. D., Sherris J. C., Linner E. C. Determination of minimum bactericidal concentrations of oxacillin for Staphylococcus aureus: influence and significance of technical factors. Antimicrob Agents Chemother. 1983 Jan;23(1):142–150. doi: 10.1128/aac.23.1.142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Then R., Angehrn P. The biochemical basis of the antimicrobial action of sulfonamides and trimethoprim in vivo--I. Action of sulfonamides and trimethoprim in blood and urine. Biochem Pharmacol. 1974 Nov 1;23(21):2977–2982. doi: 10.1016/0006-2952(74)90272-x. [DOI] [PubMed] [Google Scholar]
  20. Tofte R. W., Solliday J. A., Crossley K. B. Susceptibilities of enterococci to twelve antibiotics. Antimicrob Agents Chemother. 1984 Apr;25(4):532–533. doi: 10.1128/aac.25.4.532. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES