Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1985 Mar;27(3):357–362. doi: 10.1128/aac.27.3.357

In vitro activity and mechanism of action of A21978C1, a novel cyclic lipopeptide antibiotic.

G M Eliopoulos, C Thauvin, B Gerson, R C Moellering Jr
PMCID: PMC176277  PMID: 3994349

Abstract

The in vitro activity of A21978C1, a novel cyclic polypeptide antibiotic, was compared with those of vancomycin, teichomycin, and several beta-lactam antibiotics against gram-positive bacteria. The new drug was at least as active as vancomycin against all species of streptococci and staphylococci tested, including methicillin-resistant Staphylococcus aureus and penicillin-resistant pneumococci. Activity of the drug was found to be strongly correlated with the calcium concentration in test media. Against enterococci, A21978C1 was bactericidal at concentrations near the MIC (MIC for 100% of the strains, 2 micrograms/ml), but combining that drug with gentamicin resulted in bactericidal synergism by time-kill methods. Studies were undertaken to examine the mechanism of action of the drug. A21978C1 did not interact with penicillin-binding proteins of bacterial cell membranes. No direct effect of the drug on the synthesis of DNA, RNA, or protein by a susceptible strain of Streptococcus faecalis could be demonstrated. However, A21978C1 inhibited peptidoglycan synthesis in early-log-phase cultures of both Streptococcus faecalis and Staphylococcus aureus.

Full text

PDF
357

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cali J. P., Bowers G. N., Jr, Young D. S. A referee method for the determination of total calcium in serum. Clin Chem. 1973 Oct;19(10):1208–1213. [PubMed] [Google Scholar]
  2. Crumplin G. C., Smith J. T. Nalidixic acid: an antibacterial paradox. Antimicrob Agents Chemother. 1975 Sep;8(3):251–261. doi: 10.1128/aac.8.3.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eliopoulos G. M., Gardella A., Moellering R. C., Jr In-vitro activity of Sch 29482 in comparison with other oral antibiotics. J Antimicrob Chemother. 1982 Feb;9 (Suppl 100):143–152. doi: 10.1093/jac/9.suppl_c.143. [DOI] [PubMed] [Google Scholar]
  4. Eliopoulos G. M., Moellering R. C., Jr Susceptibility of enterococci and Listeria monocytogenes to N-Formimidoyl thienamycin alone and in combination with an aminoglycoside. Antimicrob Agents Chemother. 1981 May;19(5):789–793. doi: 10.1128/aac.19.5.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eliopoulos G. M., Wennersten C., Moellering R. C., Jr Resistance to beta-lactam antibiotics in Streptococcus faecium. Antimicrob Agents Chemother. 1982 Aug;22(2):295–301. doi: 10.1128/aac.22.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Farber B. F., Eliopoulos G. M., Ward J. I., Ruoff K., Moellering R. C., Jr Resistance to penicillin-streptomycin synergy among clinical isolates of viridans streptococci. Antimicrob Agents Chemother. 1983 Dec;24(6):871–875. doi: 10.1128/aac.24.6.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kobayashi H., Van Brunt J., Harold F. M. ATP-linked calcium transport in cells and membrane vesicles of Streptococcus faecalis. J Biol Chem. 1978 Apr 10;253(7):2085–2092. [PubMed] [Google Scholar]
  8. Krogstad D. J., Pargwette A. R. Defective killing of enterococci: a common property of antimicrobial agents acting on the cell wall. Antimicrob Agents Chemother. 1980 Jun;17(6):965–968. doi: 10.1128/aac.17.6.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Lugtenberg E. J., de Haan P. G. A simple method for following the fate of alanine-containing components in murein synthesis in Escherichia coli. Antonie Van Leeuwenhoek. 1971;37(4):537–552. doi: 10.1007/BF02218524. [DOI] [PubMed] [Google Scholar]
  11. Pearson R. D., Steigbigel R. T., Davis H. T., Chapman S. W. Method of reliable determination of minimal lethal antibiotic concentrations. Antimicrob Agents Chemother. 1980 Nov;18(5):699–708. doi: 10.1128/aac.18.5.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sande M. A., Scheld W. M. Combination antibiotic therapy of bacterial endocarditis. Ann Intern Med. 1980 Mar;92(3):390–395. doi: 10.7326/0003-4819-92-3-390. [DOI] [PubMed] [Google Scholar]
  13. Varaldo P. E., Debbia E., Schito G. C. In vitro activity of teichomycin and vancomycin alone and in combination with rifampin. Antimicrob Agents Chemother. 1983 Mar;23(3):402–406. doi: 10.1128/aac.23.3.402. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES