Abstract
The residual enzyme of the fibroblasts of a child with homozygous type 0 GM2 gangliosidosis (Sandhoff-Jatzkewitz disease) has been found to correspond with a minor fraction of enzyme which can be isolated from normal fibroblasts by repeated chromatography. This enzyme is designated as hexosaminidase (hex) S. It reacts with antiserum prepared against homogeneous hex A but not with serum prepared against homogeneous hex B. These findings support our previously described model of the relationship between hex A and hex G: hex A has the structure (alpha beta)3, while hex B is (beta)6. Type B GM2 gangliosidosis (Tay-Sachs disease) is the alpha- mutation, while type 0 GM2 gangliosidosis (Sandhoff-Jatzkewitz disease) is the beta- mutation. In the absence of normal beta subunits there is increased polymerization of alpha subunits forming hex S, which probably has a structure of (alpha)6. A parallel between the thalassemias and GM2 gangliosidosis is evident: deficiency of one of the chains of which the protein is composed leads to an excess of polymers comprised of the other chains. In type B GM2 gangliosidosis, the excess of beta chanis leads to increased amounts of hex B beta)6; in type 0 GM2 gangliosidosis, the excess of alpha chains leads to formation of increased amounts of the alpha chain polymer, hex S.
Full text
PDF![628](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/588f/1762825/75b367fa7c67/ajhg00438-0058.png)
![629](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/588f/1762825/d1bfd5deaa08/ajhg00438-0059.png)
![630](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/588f/1762825/0b4934dcc738/ajhg00438-0060.png)
![631](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/588f/1762825/c7b652423bc1/ajhg00438-0061.png)
![632](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/588f/1762825/45d7e6e577b2/ajhg00438-0062.png)
![633](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/588f/1762825/fda8d21841d9/ajhg00438-0063.png)
![634](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/588f/1762825/bca37875a404/ajhg00438-0064.png)
![635](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/588f/1762825/eed64d1d0cb8/ajhg00438-0065.png)
![636](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/588f/1762825/9faf21e8cb88/ajhg00438-0066.png)
![637](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/588f/1762825/fba2bf35f906/ajhg00438-0067.png)
![638](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/588f/1762825/f4b8d471b2e7/ajhg00438-0068.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beutler E., Guinto E., Kuhl W. Variability of -galactosidase A and B in different tissues of man. Am J Hum Genet. 1973 Jan;25(1):42–46. [PMC free article] [PubMed] [Google Scholar]
- Braidman I., Carroll M., Dance N., Robinson D., Poenaru L., Weber A., Dreyfus J. C., Overdijk B., Hooghwinkel G. J. Characterisation of human N-acetyl-beta-hexosaminidase C. FEBS Lett. 1974 May 1;41(2):181–184. doi: 10.1016/0014-5793(74)81206-8. [DOI] [PubMed] [Google Scholar]
- Carmody P. J., Rattazzi M. C. Conversion of human hexosaminidase A to hexosaminidase "B" by crude Vibrio cholerae neuraminidase preparations: merthiolate is the active factor. Biochim Biophys Acta. 1974 Nov 5;371(1):117–125. doi: 10.1016/0005-2795(74)90160-3. [DOI] [PubMed] [Google Scholar]
- Carroll M., Robinson D. Immunological identity of human liver hexosaminidases. Biochem J. 1972 Feb;126(3):17P–17P. doi: 10.1042/bj1260017pa. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carroll M., Robinson D. Immunological properties of N-acetyl-beta-D-glucosaminidase of normal human liver and of GM2-gangliosidosis liver. Biochem J. 1973 Jan;131(1):91–96. doi: 10.1042/bj1310091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
- Frohwein Y. Z., Gatt S. Isolation of beta-N-acetylhexosaminidase, beta-N-acetylglucosaminidase, and beta-N-acetylgalactosaminidase from calf brain. Biochemistry. 1967 Sep;6(9):2775–2782. doi: 10.1021/bi00861a018. [DOI] [PubMed] [Google Scholar]
- Gilbert F., Kucherlapati R., Creagan R. P., Murnane M. J., Darlington G. J., Ruddle F. H. Tay-Sachs' and Sandhoff's diseases: the assignment of genes for hexosaminidase A and B to individual human chromosomes. Proc Natl Acad Sci U S A. 1975 Jan;72(1):263–267. doi: 10.1073/pnas.72.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grzeschik K. H., Grzeschik A. M., Banhof S., Romeo G., Siniscalco M., van Someren H., Meera Khan P., Westerveld A., Bootsma D. X-linkage of human -galactosidase. Nat New Biol. 1972 Nov 8;240(97):48–50. doi: 10.1038/newbio240048a0. [DOI] [PubMed] [Google Scholar]
- Ikonne J. U., Rattazzi M. C., Desnick R. J. Characterization of Hex S, the major residual beta hexosaminidase activity in type O Gm2 gangliosidosis (Sandhoff-Jatzkewitz disease). Am J Hum Genet. 1975 Sep;27(5):639–650. [PMC free article] [PubMed] [Google Scholar]
- Lalley P. A., Rattazzi M. C., Shows T. B. Human beta-D-N-acetylhexosaminidases A and B: expression and linkage relationships in somatic cell hybrids. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1569–1573. doi: 10.1073/pnas.71.4.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okada S., O'Brien J. S. Tay-Sachs disease: generalized absence of a beta-D-N-acetylhexosaminidase component. Science. 1969 Aug 15;165(3894):698–700. doi: 10.1126/science.165.3894.698. [DOI] [PubMed] [Google Scholar]
- Poenaru L., Dreyfus J. C. Electrophoretic study of hexosaminidases. Hexosaminidase C. Clin Chim Acta. 1973 Feb 12;43(3):439–442. doi: 10.1016/0009-8981(73)90486-5. [DOI] [PubMed] [Google Scholar]
- Robinson D., Stirling J. L. N-Acetyl-beta-glucosaminidases in human spleen. Biochem J. 1968 Apr;107(3):321–327. doi: 10.1042/bj1070321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandhoff K., Harzer K., Wässle W., Jatzkewitz H. Enzyme alterations and lipid storage in three variants of Tay-Sachs disease. J Neurochem. 1971 Dec;18(12):2469–2489. doi: 10.1111/j.1471-4159.1971.tb00204.x. [DOI] [PubMed] [Google Scholar]
- Srivastava S. K., Awasthi Y. C., Yoshida A., Beutler E. Studies on human beta-D-N-acetylhexosaminidases. I. Purification and properties. J Biol Chem. 1974 Apr 10;249(7):2043–2048. [PubMed] [Google Scholar]
- Srivastava S. K., Beutler E. Antibody against purified human hexosaminidase B cross-reacting with human hexosaminidase A. Biochem Biophys Res Commun. 1972 May 26;47(4):753–759. doi: 10.1016/0006-291x(72)90556-6. [DOI] [PubMed] [Google Scholar]
- Srivastava S. K., Beutler E. Studies on human beta-D-N-acetylhexosaminidases. 3. Biochemical genetics of Tay-Sachs and Sandhoff's diseases. J Biol Chem. 1974 Apr 10;249(7):2054–2057. [PubMed] [Google Scholar]
- Srivastava S. K., Yoshida A., Awasthi Y. C., Beutler E. Studies on human beta-D-N-acetylhexosaminidases. II. Kinetic and structural properties. J Biol Chem. 1974 Apr 10;249(7):2049–2053. [PubMed] [Google Scholar]
- Swallow D. M., Stokes D. C., Corney G., Harris H. Differences between the N-acetyl hexosaminidase isozymes in serum and tissues. Ann Hum Genet. 1974 Jan;37(3):287–302. doi: 10.1111/j.1469-1809.1974.tb01836.x. [DOI] [PubMed] [Google Scholar]
- Tallman J. F., Brady R. O., Quirk J. M., Villalba M., Gal A. E. Isolation and relationship of human hexosaminidases. J Biol Chem. 1974 Jun 10;249(11):3489–3499. [PubMed] [Google Scholar]
- Thomas G. H., Taylor H. A., Miller C. S., Axelman J., Migeon B. R. Genetic complementation after fusion of Tay-Sachs and Sandhoff cells. Nature. 1974 Aug 16;250(467):580–582. doi: 10.1038/250580a0. [DOI] [PubMed] [Google Scholar]