Abstract
Hex S, the major residual beta hexosaminidase activity present in tissues, fluids, and cultured skin fibroblasts of patients with type 0 GM2 gangliosidosis, was isolated and characterized biochemically and immunologically. when appropriate tissue homogenates were tested by electrophoresis on cellulose acetate gels, hex S as well as hex C, the corresponding minor beta hexosaminidase component found in normal visceral tissues, migrated with greater anodic mobilities than hex A. However, a small but reproducible electrophoretic difference was observed between partially purified hex S and hex C components. Hex S and hex C had slightly higher apparent molecular weights than those of hex A or hex G; no major differences were found between hex S and hex A in thermostability, pH optimum, or kinetic properties. Hex S, like hex C from placenta, reacted with an antiserum directed towards the unique antigenic determinants alpha of hex A, indicating that hex S, hex C, and hex A share a common antigenic determinant. No reactivity of hex S was detected with an antiserum directed toward the common antigenic determinant beta of hex A and hex B. These results suggest that further biochemical and immunologic characterization of hex S and elucidation of its relationships with hex A, hex B, and hex C may significantly contribute to the understanding of the molecular defects in the GM2 gangliosidoses.
Full text
PDF











Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartholomew W. R., Rattazzi M. C. Immunochemical characterization of human beta-D-N-acetyl hexosaminidase from normal individuals and patients with Tay-Sachs disease. I. Antigenic differences between hexosaminidase A and hexosaminidase B. Int Arch Allergy Appl Immunol. 1974;46(4):512–524. doi: 10.1159/000231154. [DOI] [PubMed] [Google Scholar]
- Braidman I., Carroll M., Dance N., Robinson D., Poenaru L., Weber A., Dreyfus J. C., Overdijk B., Hooghwinkel G. J. Characterisation of human N-acetyl-beta-hexosaminidase C. FEBS Lett. 1974 May 1;41(2):181–184. doi: 10.1016/0014-5793(74)81206-8. [DOI] [PubMed] [Google Scholar]
- Braidman I., Carroll M., Dance N., Robinson D. Separation and properties of human brain hexosaminidase C. Biochem J. 1974 Nov;143(2):295–301. doi: 10.1042/bj1430295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carmody P. J., Rattazzi M. C. Conversion of human hexosaminidase A to hexosaminidase "B" by crude Vibrio cholerae neuraminidase preparations: merthiolate is the active factor. Biochim Biophys Acta. 1974 Nov 5;371(1):117–125. doi: 10.1016/0005-2795(74)90160-3. [DOI] [PubMed] [Google Scholar]
- Carroll M., Robinson D. A low-molecular-weight protein cross-reacting with human liver N-acetyl-beta-D-glucosaminidase. Biochem J. 1974 Feb;137(2):217–221. doi: 10.1042/bj1370217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carroll M., Robinson D. Immunological properties of N-acetyl-beta-D-glucosaminidase of normal human liver and of GM2-gangliosidosis liver. Biochem J. 1973 Jan;131(1):91–96. doi: 10.1042/bj1310091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hooghwinkel G. J., Veltkamp W. A., Overdijk B., Lisman J. J. Electrophoretic separation of -N-acetylhexosaminidases of human and bovine brain and liver and of Tay-Sachs brain tissue. Hoppe Seylers Z Physiol Chem. 1972 May;353(5):839–841. [PubMed] [Google Scholar]
- Ikonne J. U., Ellis R. B. N-acetyl-beta-D-hexosaminidase component A. Different forms in human tissues and fluids. Biochem J. 1973 Nov;135(3):457–462. doi: 10.1042/bj1350457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krivit W., Desnick R. J., Lee J., Moller J., Wright F., Sweeley C. C., Snyder P. D., Jr, Sharp H. L. Generalized accumulation of neutral glycosphingolipids with GM2 ganglioside accumulation in the brain. Sandhoff's disease (variant of Tay-Sachs disease). Am J Med. 1972 Jun;52(6):763–770. doi: 10.1016/0002-9343(72)90082-4. [DOI] [PubMed] [Google Scholar]
- LEABACK D. H., WALKER P. G. Studies on glucosaminidase. 4. The fluorimetric assay of N-acetyl-beta-glucosaminidase. Biochem J. 1961 Jan;78:151–156. doi: 10.1042/bj0780151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okada S., O'Brien J. S. Tay-Sachs disease: generalized absence of a beta-D-N-acetylhexosaminidase component. Science. 1969 Aug 15;165(3894):698–700. doi: 10.1126/science.165.3894.698. [DOI] [PubMed] [Google Scholar]
- Poenaru L., Dreyfus J. C. Electrophoretic study of hexosaminidases. Hexosaminidase C. Clin Chim Acta. 1973 Feb 12;43(3):439–442. doi: 10.1016/0009-8981(73)90486-5. [DOI] [PubMed] [Google Scholar]
- Price R. G., Dance N. The demonstration of multiple heat stable forms of N-acetyl- -glucosaminidase in normal human serum. Biochim Biophys Acta. 1972 Jun 22;271(1):145–153. doi: 10.1016/0005-2795(72)90142-0. [DOI] [PubMed] [Google Scholar]
- Rattazzi M. C. Glucose 6-phosphate dehydrogenase from human erythrocytes: molecular weight determination by gel filtration. Biochem Biophys Res Commun. 1968 Apr 5;31(1):16–24. doi: 10.1016/0006-291x(68)90024-7. [DOI] [PubMed] [Google Scholar]
- Robinson D., Stirling J. L. N-Acetyl-beta-glucosaminidases in human spleen. Biochem J. 1968 Apr;107(3):321–327. doi: 10.1042/bj1070321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson D., Stirling J. L. N-Acetyl-beta-glucosaminidases in human spleen. Biochem J. 1968 Apr;107(3):321–327. doi: 10.1042/bj1070321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ropers H. H., Schwantes U. On the molecular basis of Sandhoff's disease. Humangenetik. 1973;20(2):167–170. doi: 10.1007/BF00284854. [DOI] [PubMed] [Google Scholar]
- Sandhoff K., Andreae U., Jatzkewitz H. Deficient hexosaminidase activity in an exceptional case of Tay-Sachs disease with additional storage of kidney globoside in visceral organs. Pathol Eur. 1968;3(2):278–285. [PubMed] [Google Scholar]
- Sandhoff K. Auftrennung der Säuger-N-Acetyl-beta-D-hexosaminidase in multiple Formen durch Elektrofokusserung. Hoppe Seylers Z Physiol Chem. 1968 Sep;349(9):1095–1098. [PubMed] [Google Scholar]
- Sandhoff K., Harzer K., Wässle W., Jatzkewitz H. Enzyme alterations and lipid storage in three variants of Tay-Sachs disease. J Neurochem. 1971 Dec;18(12):2469–2489. doi: 10.1111/j.1471-4159.1971.tb00204.x. [DOI] [PubMed] [Google Scholar]
- Srivastava S. K., Awasthi Y. C., Yoshida A., Beutler E. Studies on human beta-D-N-acetylhexosaminidases. I. Purification and properties. J Biol Chem. 1974 Apr 10;249(7):2043–2048. [PubMed] [Google Scholar]
- Srivastava S. K., Beutler E. Studies on human beta-D-N-acetylhexosaminidases. 3. Biochemical genetics of Tay-Sachs and Sandhoff's diseases. J Biol Chem. 1974 Apr 10;249(7):2054–2057. [PubMed] [Google Scholar]
- Stirling J. L. Separation and characterisation of N-acetyl- -glucosaminidases A and P from maternal serum. Biochim Biophys Acta. 1972 Jun 22;271(1):154–162. doi: 10.1016/0005-2795(72)90143-2. [DOI] [PubMed] [Google Scholar]
- Tallman J. F., Brady R. O., Quirk J. M., Villalba M., Gal A. E. Isolation and relationship of human hexosaminidases. J Biol Chem. 1974 Jun 10;249(11):3489–3499. [PubMed] [Google Scholar]


