Abstract
Aims: To obtain normative data on bone mineral density and body composition measured with dual energy x ray absorptiometry (DXA) from early childhood to young adulthood.
Methods: Cross sectional results from 444 healthy white volunteers (4–20 years) in the Netherlands were combined with the results from 198 children who agreed to participate in the follow up study approximately four years later. DXA (Lunar, DPXL) of lumbar spine and total body was performed to assess bone density and body composition.
Results: Bone density and lean body mass (LBM) increased with age. Maximal increase in bone density and LBM occurred around the age of 13 years in girls and approximately two years later in boys. Bone density of total body and lumbar spine showed an ongoing slight increase in the third decade. Mean fat percentage in boys remained at 10.5% throughout childhood, but increased in girls.
Conclusions: Most of the skeletal mass in lumbar spine and total body is reached before the end of the second decade, with a slight increase thereafter. This study provides reference values for bone density and body composition measured with DXA for children and young adults.
Full Text
The Full Text of this article is available as a PDF (405.6 KB).
Figure 1 .
Bone mineral density (BMD) of lumbar spine and total body and bone mineral apparent density (BMAD) of lumbar spine plotted by age in boys and girls. The bold line represents the fitted line, the thin lines represent ±2 SD.
Figure 2 .
Bone mineral content (BMC), lean body mass (LBM), and percentage body fat (% fat) plotted by age in boys and girls. The bold line represents the fitted line, the thin lines represent ±2 SD.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altman D. G. Construction of age-related reference centiles using absolute residuals. Stat Med. 1993 May 30;12(10):917–924. doi: 10.1002/sim.4780121003. [DOI] [PubMed] [Google Scholar]
- Baroncelli G. I., Bertelloni S., Ceccarelli C., Saggese G. Measurement of volumetric bone mineral density accurately determines degree of lumbar undermineralization in children with growth hormone deficiency. J Clin Endocrinol Metab. 1998 Sep;83(9):3150–3154. doi: 10.1210/jcem.83.9.5072. [DOI] [PubMed] [Google Scholar]
- Boot A. M., Bouquet J., de Ridder M. A., Krenning E. P., de Muinck Keizer-Schrama S. M. Determinants of body composition measured by dual-energy X-ray absorptiometry in Dutch children and adolescents. Am J Clin Nutr. 1997 Aug;66(2):232–238. doi: 10.1093/ajcn/66.2.232. [DOI] [PubMed] [Google Scholar]
- Boot A. M., Engels M. A., Boerma G. J., Krenning E. P., De Muinck Keizer-Schrama S. M. Changes in bone mineral density, body composition, and lipid metabolism during growth hormone (GH) treatment in children with GH deficiency. J Clin Endocrinol Metab. 1997 Aug;82(8):2423–2428. doi: 10.1210/jcem.82.8.4149. [DOI] [PubMed] [Google Scholar]
- Boot A. M., de Ridder M. A., Pols H. A., Krenning E. P., de Muinck Keizer-Schrama S. M. Bone mineral density in children and adolescents: relation to puberty, calcium intake, and physical activity. J Clin Endocrinol Metab. 1997 Jan;82(1):57–62. doi: 10.1210/jcem.82.1.3665. [DOI] [PubMed] [Google Scholar]
- Carter D. R., Bouxsein M. L., Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Miner Res. 1992 Feb;7(2):137–145. doi: 10.1002/jbmr.5650070204. [DOI] [PubMed] [Google Scholar]
- Cummings S. R., Black D. M., Nevitt M. C., Browner W., Cauley J., Ensrud K., Genant H. K., Palermo L., Scott J., Vogt T. M. Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet. 1993 Jan 9;341(8837):72–75. doi: 10.1016/0140-6736(93)92555-8. [DOI] [PubMed] [Google Scholar]
- Duke P. M., Litt I. F., Gross R. T. Adolescents' self-assessment of sexual maturation. Pediatrics. 1980 Dec;66(6):918–920. [PubMed] [Google Scholar]
- Frank G. R. The role of estrogen in pubertal skeletal physiology: epiphyseal maturation and mineralization of the skeleton. Acta Paediatr. 1995 Jun;84(6):627–630. doi: 10.1111/j.1651-2227.1995.tb13714.x. [DOI] [PubMed] [Google Scholar]
- Gilsanz V., Gibbens D. T., Carlson M., Boechat M. I., Cann C. E., Schulz E. E. Peak trabecular vertebral density: a comparison of adolescent and adult females. Calcif Tissue Int. 1988 Oct;43(4):260–262. doi: 10.1007/BF02555144. [DOI] [PubMed] [Google Scholar]
- Gilsanz V., Roe T. F., Mora S., Costin G., Goodman W. G. Changes in vertebral bone density in black girls and white girls during childhood and puberty. N Engl J Med. 1991 Dec 5;325(23):1597–1600. doi: 10.1056/NEJM199112053252302. [DOI] [PubMed] [Google Scholar]
- Going S. B., Massett M. P., Hall M. C., Bare L. A., Root P. A., Williams D. P., Lohman T. G. Detection of small changes in body composition by dual-energy x-ray absorptiometry. Am J Clin Nutr. 1993 Jun;57(6):845–850. doi: 10.1093/ajcn/57.6.845. [DOI] [PubMed] [Google Scholar]
- Goulding A., Jones I. E., Taylor R. W., Manning P. J., Williams S. M. More broken bones: a 4-year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res. 2000 Oct;15(10):2011–2018. doi: 10.1359/jbmr.2000.15.10.2011. [DOI] [PubMed] [Google Scholar]
- Johansson A. G., Forslund A., Sjödin A., Mallmin H., Hambraeus L., Ljunghall S. Determination of body composition--a comparison of dual-energy x-ray absorptiometry and hydrodensitometry. Am J Clin Nutr. 1993 Mar;57(3):323–326. doi: 10.1093/ajcn/57.3.323. [DOI] [PubMed] [Google Scholar]
- Johnson J., Dawson-Hughes B. Precision and stability of dual-energy X-ray absorptiometry measurements. Calcif Tissue Int. 1991 Sep;49(3):174–178. doi: 10.1007/BF02556113. [DOI] [PubMed] [Google Scholar]
- Kröger H., Kotaniemi A., Vainio P., Alhava E. Bone densitometry of the spine and femur in children by dual-energy x-ray absorptiometry. Bone Miner. 1992 Apr;17(1):75–85. doi: 10.1016/0169-6009(92)90712-m. [DOI] [PubMed] [Google Scholar]
- Kröger H., Kotaniemi A., Vainio P., Alhava E. Bone densitometry of the spine and femur in children by dual-energy x-ray absorptiometry. Bone Miner. 1992 Apr;17(1):75–85. doi: 10.1016/0169-6009(92)90712-m. [DOI] [PubMed] [Google Scholar]
- Kröger H., Vainio P., Nieminen J., Kotaniemi A. Comparison of different models for interpreting bone mineral density measurements using DXA and MRI technology. Bone. 1995 Aug;17(2):157–159. doi: 10.1016/s8756-3282(95)00162-x. [DOI] [PubMed] [Google Scholar]
- Leonard M. B., Feldman H. I., Zemel B. S., Berlin J. A., Barden E. M., Stallings V. A. Evaluation of low density spine software for the assessment of bone mineral density in children. J Bone Miner Res. 1998 Nov;13(11):1687–1690. doi: 10.1359/jbmr.1998.13.11.1687. [DOI] [PubMed] [Google Scholar]
- Leonard M. B., Propert K. J., Zemel B. S., Stallings V. A., Feldman H. I. Discrepancies in pediatric bone mineral density reference data: potential for misdiagnosis of osteopenia. J Pediatr. 1999 Aug;135(2 Pt 1):182–188. doi: 10.1016/s0022-3476(99)70020-x. [DOI] [PubMed] [Google Scholar]
- Lu P. W., Briody J. N., Ogle G. D., Morley K., Humphries I. R., Allen J., Howman-Giles R., Sillence D., Cowell C. T. Bone mineral density of total body, spine, and femoral neck in children and young adults: a cross-sectional and longitudinal study. J Bone Miner Res. 1994 Sep;9(9):1451–1458. doi: 10.1002/jbmr.5650090918. [DOI] [PubMed] [Google Scholar]
- Martin A. D., Bailey D. A., McKay H. A., Whiting S. Bone mineral and calcium accretion during puberty. Am J Clin Nutr. 1997 Sep;66(3):611–615. doi: 10.1093/ajcn/66.3.611. [DOI] [PubMed] [Google Scholar]
- Matkovic V., Jelic T., Wardlaw G. M., Ilich J. Z., Goel P. K., Wright J. K., Andon M. B., Smith K. T., Heaney R. P. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest. 1994 Feb;93(2):799–808. doi: 10.1172/JCI117034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mazess R. B., Barden H. S., Bisek J. P., Hanson J. Dual-energy x-ray absorptiometry for total-body and regional bone-mineral and soft-tissue composition. Am J Clin Nutr. 1990 Jun;51(6):1106–1112. doi: 10.1093/ajcn/51.6.1106. [DOI] [PubMed] [Google Scholar]
- Mazess R. B., Barden H., Mautalen C., Vega E. Normalization of spine densitometry. J Bone Miner Res. 1994 Apr;9(4):541–548. doi: 10.1002/jbmr.5650090414. [DOI] [PubMed] [Google Scholar]
- Mølgaard C., Thomsen B. L., Prentice A., Cole T. J., Michaelsen K. F. Whole body bone mineral content in healthy children and adolescents. Arch Dis Child. 1997 Jan;76(1):9–15. doi: 10.1136/adc.76.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohlsson C., Bengtsson B. A., Isaksson O. G., Andreassen T. T., Slootweg M. C. Growth hormone and bone. Endocr Rev. 1998 Feb;19(1):55–79. doi: 10.1210/edrv.19.1.0324. [DOI] [PubMed] [Google Scholar]
- Pintauro S. J., Nagy T. R., Duthie C. M., Goran M. I. Cross-calibration of fat and lean measurements by dual-energy X-ray absorptiometry to pig carcass analysis in the pediatric body weight range. Am J Clin Nutr. 1996 Mar;63(3):293–298. doi: 10.1093/ajcn/63.3.293. [DOI] [PubMed] [Google Scholar]
- Plotkin H., Núez M., Alvarez Filgueira M. L., Zanchetta J. R. Lumbar spine bone density in Argentine children. Calcif Tissue Int. 1996 Mar;58(3):144–149. doi: 10.1007/BF02526879. [DOI] [PubMed] [Google Scholar]
- Prentice A., Parsons T. J., Cole T. J. Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr. 1994 Dec;60(6):837–842. doi: 10.1093/ajcn/60.6.837. [DOI] [PubMed] [Google Scholar]
- Recker R. R., Davies K. M., Hinders S. M., Heaney R. P., Stegman M. R., Kimmel D. B. Bone gain in young adult women. JAMA. 1992 Nov 4;268(17):2403–2408. [PubMed] [Google Scholar]
- Ribot C., Trémollieres F., Pouilles J. M. Late consequences of a low peak bone mass. Acta Paediatr Suppl. 1995 Sep;411:31–36. doi: 10.1111/j.1651-2227.1995.tb13857.x. [DOI] [PubMed] [Google Scholar]
- Riggs B. L., Melton L. J., 3rd The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone. 1995 Nov;17(5 Suppl):505S–511S. doi: 10.1016/8756-3282(95)00258-4. [DOI] [PubMed] [Google Scholar]
- Rodin A., Murby B., Smith M. A., Caleffi M., Fentiman I., Chapman M. G., Fogelman I. Premenopausal bone loss in the lumbar spine and neck of femur: a study of 225 Caucasian women. Bone. 1990;11(1):1–5. doi: 10.1016/8756-3282(90)90064-6. [DOI] [PubMed] [Google Scholar]
- Ross P. D., Davis J. W., Epstein R. S., Wasnich R. D. Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med. 1991 Jun 1;114(11):919–923. doi: 10.7326/0003-4819-114-11-919. [DOI] [PubMed] [Google Scholar]
- Sabatier J. P., Guaydier-Souquières G., Laroche D., Benmalek A., Fournier L., Guillon-Metz F., Delavenne J., Denis A. Y. Bone mineral acquisition during adolescence and early adulthood: a study in 574 healthy females 10-24 years of age. Osteoporos Int. 1996;6(2):141–148. doi: 10.1007/BF01623938. [DOI] [PubMed] [Google Scholar]
- Tanner J. M., Whitehouse R. H. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child. 1976 Mar;51(3):170–179. doi: 10.1136/adc.51.3.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warner J. T., Cowan F. J., Dunstan F. D., Evans W. D., Webb D. K., Gregory J. W. Measured and predicted bone mineral content in healthy boys and girls aged 6-18 years: adjustment for body size and puberty. Acta Paediatr. 1998 Mar;87(3):244–249. doi: 10.1080/08035259850157264. [DOI] [PubMed] [Google Scholar]
- del Rio Barquero L., Romera Baures M., Pavia Segura J., Setoain Quinquer J., Serra Majem L., Garces Ruiz P., Lafuente Navarro C., Domenech Torné F. M. Bone mineral density in two different socio-economic population groups. Bone Miner. 1992 Aug;18(2):159–168. doi: 10.1016/0169-6009(92)90856-9. [DOI] [PubMed] [Google Scholar]