Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1985 Jul;28(1):78–83. doi: 10.1128/aac.28.1.78

Antagonistic effect of penicillin-amikacin combinations against enterococci.

C Thauvin, G M Eliopoulos, C Wennersten, R C Moellering Jr
PMCID: PMC176314  PMID: 3929683

Abstract

Amikacin has been shown to antagonize the bactericidal effect of penicillin against strains of Streptococcus faecalis which produce aminoglycoside 3'-phosphotransferase. The mechanism by which this phenomenon occurs was studied with an enzyme-producing strain (8436) and an enzyme-negative strain (8436c) derived by curing the former with novobiocin. Combinations of amikacin with beta-lactam antibiotics were antagonistic against strain 8436 but synergistic against strain 8436c. Against strain 8436 penicillin-amikacin combinations resulted in levels of killing comparable to those seen with high concentrations of penicillin (500 micrograms/ml), which were less bactericidal than lower concentrations of penicillin. No antagonism was observed between amikacin and non-beta-lactam cell wall-active drugs or between penicillin and kanamycin or neomycin, both of which are substrates for the enzyme. At concentrations near the MIC, amikacin was bactericidal against strain 8436c but bacteriostatic against strain 8436 (MIC, 250 micrograms/ml; MBC, 2,000 micrograms/ml). Neither penicillin nor phosphorylated amikacin affected the inhibition of ribosomal protein synthesis by amikacin in a cell-free system. Although antagonism of killing by amikacin in enzyme-positive strains was specific for combinations which included beta-lactam antibiotics, amikacin did not influence the binding of [3H]penicillin to penicillin-binding proteins in isolated bacterial cell membranes or in intact cells and did not detectably affect the autolytic system of cells exposed to penicillin. Antagonism of beta-lactam activity by a bacteriostatic effect of amikacin against the enzyme-producing strain is the most likely explanation for this phenomenon.

Full text

PDF
78

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Calderwood S. B., Wennersten C., Moellering R. C., Jr Resistance to antibiotic synergism in Streptococcus faecalis: further studies with amikacin and with a new amikacin derivative, 4'-deoxy, 6'-N-methylamikacin. Antimicrob Agents Chemother. 1981 Apr;19(4):549–555. doi: 10.1128/aac.19.4.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Eliopoulos G. M., Farber B. F., Murray B. E., Wennersten C., Moellering R. C., Jr Ribosomal resistance of clinical enterococcal to streptomycin isolates. Antimicrob Agents Chemother. 1984 Mar;25(3):398–399. doi: 10.1128/aac.25.3.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eliopoulos G. M., Wennersten C., Moellering R. C., Jr Resistance to beta-lactam antibiotics in Streptococcus faecium. Antimicrob Agents Chemother. 1982 Aug;22(2):295–301. doi: 10.1128/aac.22.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Facklam R. R. Recognition of group D streptococcal species of human origin by biochemical and physiological tests. Appl Microbiol. 1972 Jun;23(6):1131–1139. doi: 10.1128/am.23.6.1131-1139.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gutmann L., Williamson R., Tomasz A. Physiological properties of penicillin-binding proteins in group A streptococci. Antimicrob Agents Chemother. 1981 May;19(5):872–880. doi: 10.1128/aac.19.5.872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Krogstad D. J., Korfhagen T. R., Moellering R. C., Jr, Wennersten C., Swartz M. N. Aminoglycoside-inactivating enzymes in clinical isolates of Streptococcus faecalis. An explanation for resistance to antibiotic synergism. J Clin Invest. 1978 Aug;62(2):480–486. doi: 10.1172/JCI109149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Krogstad D. J., Korfhagen T. R., Moellering R. C., Jr, Wennersten C., Swartz M. N. Plasmid-mediated resistance to antibiotic synergism in enterococci. J Clin Invest. 1978 Jun;61(6):1645–1653. doi: 10.1172/JCI109085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Krogstad D. J., Pargwette A. R. Defective killing of enterococci: a common property of antimicrobial agents acting on the cell wall. Antimicrob Agents Chemother. 1980 Jun;17(6):965–968. doi: 10.1128/aac.17.6.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  10. Mandel L. J., Murphy E., Steigbigel N. H., Miller M. H. Gentamicin uptake in Staphylococcus aureus possessing plasmid-encoded, aminoglycoside-modifying enzymes. Antimicrob Agents Chemother. 1984 Oct;26(4):563–569. doi: 10.1128/aac.26.4.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McHugh G. L., Swartz M. N. Elimination of plasmids from several bacterial species by novobiocin. Antimicrob Agents Chemother. 1977 Sep;12(3):423–426. doi: 10.1128/aac.12.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moellering R. C., Jr, Wennersten C., Weinberg A. N. Studies on antibiotic synergism against enterococci. I. Bacteriologic studies. J Lab Clin Med. 1971 May;77(5):821–828. [PubMed] [Google Scholar]
  13. Standiford H. D., De Maine J. B., Kirby W. M. Antibiotic synergism of enterococci. Relation to inhibitory concentrations. Arch Intern Med. 1970 Aug;126(2):255–259. [PubMed] [Google Scholar]
  14. Storch G. A., Krogstad D. J. Antibiotic-induced lysis of enterococci. J Clin Invest. 1981 Sep;68(3):639–645. doi: 10.1172/JCI110298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Watanakunakorn C. Penicillin combined with gentamicin or streptomycin: synergism against enterococci. J Infect Dis. 1971 Dec;124(6):581–586. doi: 10.1093/infdis/124.6.581. [DOI] [PubMed] [Google Scholar]
  16. Zimmermann R. A., Moellering R. C., Jr, Weinberg A. N. Mechanism of resistance to antibiotic synergism in enterococci. J Bacteriol. 1971 Mar;105(3):873–879. doi: 10.1128/jb.105.3.873-879.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES