Abstract
Bacteroides uniformis RYC3373 resistant to 64 micrograms of chloramphenicol per ml was isolated from a peritoneal pelvic abscess of a patient not previously treated with this drug. Chloramphenicol resistance was transferable at low frequency to a suitable Bacteroides fragilis recipient. The acquisition of resistance was linked to the presence of a 39.5-kilobase plasmid (pRYC3373), which was subsequently transferred to a secondary recipient. The transfer of Cm resistance occurred by a conjugation-like process. Donor and transconjugant strains produced chloramphenicol acetyltransferase constitutively. The Km for chloramphenicol was 40 microM, and its inactivation by 5-5'-dithiobis(2-nitrobenzoic acid) suggested its similarity to the type II enterobacterial enzymes encoded by different conjugative plasmids and also to a previously described enzyme of B. fragilis F47 and F48. The specific activity and the resistance level in pRYC3373-bearing strains were more than 10-fold higher than in the case of the enzyme from B. fragilis strains F47 and F48. The genetic basis of chloramphenicol acetyltransferase synthesis in Bacteroides spp. had not been previously established.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baquero F., Bouanchaud D., Martinez-Perez M. C., Fernandez C. Microcin plasmids: a group of extrachromosomal elements coding for low-molecular-weight antibiotics in Escherichia coli. J Bacteriol. 1978 Aug;135(2):342–347. doi: 10.1128/jb.135.2.342-347.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Britz M. L. Resistance to chloramphenicol and metronidazole in anaerobic bacteria. J Antimicrob Chemother. 1981 Dec;8 (Suppl 500):49–57. doi: 10.1093/jac/8.suppl_d.49. [DOI] [PubMed] [Google Scholar]
- Britz M. L., Wilkinson R. G. Chloramphenicol acetyltransferase of Bacteroides fragilis. Antimicrob Agents Chemother. 1978 Jul;14(1):105–111. doi: 10.1128/aac.14.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuchural G. J., Jr, Tally F. P., Jacobus N. V., Gorbach S. L., Aldridge K., Cleary T., Finegold S. M., Hill G., Iannini P., O'Keefe J. P. Antimicrobial susceptibilities of 1,292 isolates of the Bacteroides fragilis group in the United States: comparison of 1981 with 1982. Antimicrob Agents Chemother. 1984 Aug;26(2):145–148. doi: 10.1128/aac.26.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guiney D. G., Jr, Hasegawa P., Davis C. E. Homology between clindamycin resistance plasmids in Bacteroides. Plasmid. 1984 May;11(3):268–271. doi: 10.1016/0147-619x(84)90035-0. [DOI] [PubMed] [Google Scholar]
- Ireland C. R. Detailed restriction enzyme map of crown gall-suppressive IncW plasmid pSa, showing ends of deletion causing chloramphenicol sensitivity. J Bacteriol. 1983 Aug;155(2):722–727. doi: 10.1128/jb.155.2.722-727.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Macrina F. L., Mays T. K., Smith C. J., Welch R. A. Non-plasmid associated transfer of antibiotic resistance in Bacteroides. J Antimicrob Chemother. 1981 Dec;8 (Suppl 500):77–86. doi: 10.1093/jac/8.suppl_d.77. [DOI] [PubMed] [Google Scholar]
- Magot M., Fayolle F., Privitera G., Sebald M. Transposon-like structures in the Bacteroides fragilis MLS plasmid plP 410. Mol Gen Genet. 1981;181(4):559–561. doi: 10.1007/BF00428754. [DOI] [PubMed] [Google Scholar]
- Malamy M. H., Tally F. P. Mechanisms of drug-resistance transfer in Bacteroides fragilis. J Antimicrob Chemother. 1981 Dec;8 (Suppl 500):59–75. doi: 10.1093/jac/8.suppl_d.59. [DOI] [PubMed] [Google Scholar]
- Mancini C., Behme R. J. Transfer of multiple antibiotic resistance from Bacteroides fragilis to Escherichia coli. J Infect Dis. 1977 Oct;136(4):597–600. doi: 10.1093/infdis/136.4.597. [DOI] [PubMed] [Google Scholar]
- Onderdonk A. B., Kasper D. L., Mansheim B. J., Louie T. J., Gorbach S. L., Bartlett J. G. Experimental animal models for anaerobic infections. Rev Infect Dis. 1979 Mar-Apr;1(2):291–301. doi: 10.1093/clinids/1.2.291. [DOI] [PubMed] [Google Scholar]
- Privitera G., Dublanchet A., Sebald M. Transfer of multiple antibiotic resistance between subspecies of Bacteroides fragilis. J Infect Dis. 1979 Jan;139(1):97–101. doi: 10.1093/infdis/139.1.97. [DOI] [PubMed] [Google Scholar]
- Privitera G., Sebald M., Fayolle F. Common regulatory mechanism of expression and conjugative ability of a tetracycline resistance plasmid in Bacteroides fragilis. Nature. 1979 Apr 12;278(5705):657–659. doi: 10.1038/278657a0. [DOI] [PubMed] [Google Scholar]
- Reig M., Campello M. G., Baquero F. Epidemiology of clindamycin resistance in the Bacteroides fragilis group. J Antimicrob Chemother. 1984 Dec;14(6):595–603. doi: 10.1093/jac/14.6.595. [DOI] [PubMed] [Google Scholar]
- Roberts M., Corney A., Shaw W. V. Molecular characterization of three chloramphenicol acetyltransferases isolated from Haemophilus influenzae. J Bacteriol. 1982 Aug;151(2):737–741. doi: 10.1128/jb.151.2.737-741.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rotimi V. O., Duerden B. I., Hafiz S. Transferable plasmid-mediated antibiotic resistance in Bacteroides. J Med Microbiol. 1981 Nov;14(4):359–370. doi: 10.1099/00222615-14-4-359. [DOI] [PubMed] [Google Scholar]
- Salzer W., Pegram P. S., Jr, McCall C. E. Clinical evaluation of moxalactam: evidence of decreased efficacy in gram-positive aerobic infections. Antimicrob Agents Chemother. 1983 Apr;23(4):565–570. doi: 10.1128/aac.23.4.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaw W. V. Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enzymol. 1975;43:737–755. doi: 10.1016/0076-6879(75)43141-x. [DOI] [PubMed] [Google Scholar]
- Shaw W. V. Chloramphenicol acetyltransferase: enzymology and molecular biology. CRC Crit Rev Biochem. 1983;14(1):1–46. doi: 10.3109/10409238309102789. [DOI] [PubMed] [Google Scholar]
- Smith C. J., Macrina F. L. Large transmissible clindamycin resistance plasmid in Bacteroides ovatus. J Bacteriol. 1984 May;158(2):739–741. doi: 10.1128/jb.158.2.739-741.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutter V. L., Barry A. L., Wilkins T. D., Zabransky R. J. Collaborative evaluation of a proposed reference dilution method of susceptibility testing of anaerobic bacteria. Antimicrob Agents Chemother. 1979 Oct;16(4):495–502. doi: 10.1128/aac.16.4.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tally F. P., Snydman D. R., Shimell M. J., Malamy M. H. Characterization of pBFTM10, a clindamycin-erythromycin resistance transfer factor from Bacteroides fragilis. J Bacteriol. 1982 Aug;151(2):686–691. doi: 10.1128/jb.151.2.686-691.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welch R. A., Macrina F. L. Physical characterization of Bacteroides fragilis R plasmid pBF4. J Bacteriol. 1981 Feb;145(2):867–872. doi: 10.1128/jb.145.2.867-872.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]