Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2001 Jan;70(1):95–100. doi: 10.1136/jnnp.70.1.95

Release of biochemical markers of damage to neuronal and glial brain tissue is associated with short and long term neuropsychological outcome after traumatic brain injury

M Herrmann 1, N Curio 1, S Jost 1, C Grubich 1, A Ebert 1, M Fork 1, H Synowitz 1
PMCID: PMC1763450  PMID: 11118255

Abstract

OBJECTIVES—The present study aimed at the analysis of release patterns of neurobiochemical markers of brain damage (neuron specific enolase (NSE) and protein S-100B) in patients with traumatic brain injury and their predictive value with respect to the short and long term neuropsychological outcome.
METHODS—Serial NSE and S-100B concentrations were analysed in blood samples taken at the first, second, and third day after traumatic brain injury. In 69 patients who fulfilled the inclusion criteria (no history of neurological or psychiatric disorder or alcohol or drug dependency, blood sampling according to the scheduled time scale, aged between 16 and 65 years) standardised neurological examinations and qualitative and quantitative evaluation of CT were performed. Comprehensive neuropsychological assessment was performed in 39 subjects 2 weeks after admission and in 29 subjects at a 6 month follow up examination.
RESULTS—Most patients presented with minor head injuries (GCS⩾13) at the time of admission. Six months later most patients were fully independent in activities of daily living. Two thirds of the patients, however, still had neuropsychological dysfunction. Patients with short and long term neuropsychological disorders had significantly higher NSE and S-100B serum concentrations and a significantly longer lasting release of both markers. A comparative analysis of the predictive value of clinical, neuroradiological, and biochemical data showed initial S-100B values above 140 ng/l to have the highest predictive power.
CONCLUSIONS—The analysis of post-traumatic release patterns of neurobiochemical markers of brain damage might help to identify patients with traumatic brain injury who run a risk of long term neuropsychological dysfunction.



Full Text

The Full Text of this article is available as a PDF (161.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Folstein M. F., Folstein S. E., McHugh P. R. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975 Nov;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6. [DOI] [PubMed] [Google Scholar]
  2. Gale S. D., Johnson S. C., Bigler E. D., Blatter D. D. Nonspecific white matter degeneration following traumatic brain injury. J Int Neuropsychol Soc. 1995 Jan;1(1):17–28. doi: 10.1017/s1355617700000060. [DOI] [PubMed] [Google Scholar]
  3. Gentry L. R., Godersky J. C., Thompson B. MR imaging of head trauma: review of the distribution and radiopathologic features of traumatic lesions. AJR Am J Roentgenol. 1988 Mar;150(3):663–672. doi: 10.2214/ajr.150.3.663. [DOI] [PubMed] [Google Scholar]
  4. Heinemann A. W., Linacre J. M., Wright B. D., Hamilton B. B., Granger C. Relationships between impairment and physical disability as measured by the functional independence measure. Arch Phys Med Rehabil. 1993 Jun;74(6):566–573. doi: 10.1016/0003-9993(93)90153-2. [DOI] [PubMed] [Google Scholar]
  5. Herrmann M., Jost S., Kutz S., Ebert A. D., Kratz T., Wunderlich M. T., Synowitz H. Temporal profile of release of neurobiochemical markers of brain damage after traumatic brain injury is associated with intracranial pathology as demonstrated in cranial computerized tomography. J Neurotrauma. 2000 Feb;17(2):113–122. doi: 10.1089/neu.2000.17.113. [DOI] [PubMed] [Google Scholar]
  6. Herrmann Manfred, Curio Noreen, Jost Stefan, Wunderlich Michael T., Synowitz Hans, Wallesch Claus-W. Protein S-100B and neuron specific enolase as early neurobiochemical markers of the severity of traumatic brain injury. Restor Neurol Neurosci. 1999;14(2-3):109–114. [PubMed] [Google Scholar]
  7. Hu J., Ferreira A., Van Eldik L. J. S100beta induces neuronal cell death through nitric oxide release from astrocytes. J Neurochem. 1997 Dec;69(6):2294–2301. doi: 10.1046/j.1471-4159.1997.69062294.x. [DOI] [PubMed] [Google Scholar]
  8. Hu J., Van Eldik L. J. S100 beta induces apoptotic cell death in cultured astrocytes via a nitric oxide-dependent pathway. Biochim Biophys Acta. 1996 Oct 11;1313(3):239–245. doi: 10.1016/0167-4889(96)00095-x. [DOI] [PubMed] [Google Scholar]
  9. Hårdemark H. G., Ericsson N., Kotwica Z., Rundström G., Mendel-Hartvig I., Olsson Y., Påhlman S., Persson L. S-100 protein and neuron-specific enolase in CSF after experimental traumatic or focal ischemic brain damage. J Neurosurg. 1989 Nov;71(5 Pt 1):727–731. doi: 10.3171/jns.1989.71.5.0727. [DOI] [PubMed] [Google Scholar]
  10. Kurth S. M., Bigler E. D., Blatter D. D. Neuropsychological outcome and quantitative image analysis of acute haemorrhage in traumatic brain injury: preliminary findings. Brain Inj. 1994 Aug-Sep;8(6):489–500. doi: 10.3109/02699059409151001. [DOI] [PubMed] [Google Scholar]
  11. Marangos P. J., Schmechel D. E. Neuron specific enolase, a clinically useful marker for neurons and neuroendocrine cells. Annu Rev Neurosci. 1987;10:269–295. doi: 10.1146/annurev.ne.10.030187.001413. [DOI] [PubMed] [Google Scholar]
  12. McAdory B. S., Van Eldik L. J., Norden J. J. S100B, a neurotropic protein that modulates neuronal protein phosphorylation, is upregulated during lesion-induced collateral sprouting and reactive synaptogenesis. Brain Res. 1998 Nov 30;813(1):211–217. doi: 10.1016/s0006-8993(98)01014-2. [DOI] [PubMed] [Google Scholar]
  13. McKeating E. G., Andrews P. J., Mascia L. Relationship of neuron specific enolase and protein S-100 concentrations in systemic and jugular venous serum to injury severity and outcome after traumatic brain injury. Acta Neurochir Suppl. 1998;71:117–119. doi: 10.1007/978-3-7091-6475-4_35. [DOI] [PubMed] [Google Scholar]
  14. Raabe A., Grolms C., Keller M., Döhnert J., Sorge O., Seifert V. Correlation of computed tomography findings and serum brain damage markers following severe head injury. Acta Neurochir (Wien) 1998;140(8):787–792. doi: 10.1007/s007010050180. [DOI] [PubMed] [Google Scholar]
  15. Raabe A., Grolms C., Sorge O., Zimmermann M., Seifert V. Serum S-100B protein in severe head injury. Neurosurgery. 1999 Sep;45(3):477–483. doi: 10.1097/00006123-199909000-00012. [DOI] [PubMed] [Google Scholar]
  16. Regard M., Strauss E., Knapp P. Children's production on verbal and non-verbal fluency tasks. Percept Mot Skills. 1982 Dec;55(3 Pt 1):839–844. doi: 10.2466/pms.1982.55.3.839. [DOI] [PubMed] [Google Scholar]
  17. Ross S. A., Cunningham R. T., Johnston C. F., Rowlands B. J. Neuron-specific enolase as an aid to outcome prediction in head injury. Br J Neurosurg. 1996 Oct;10(5):471–476. doi: 10.1080/02688699647104. [DOI] [PubMed] [Google Scholar]
  18. Schäfer B. W., Heizmann C. W. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci. 1996 Apr;21(4):134–140. doi: 10.1016/s0968-0004(96)80167-8. [DOI] [PubMed] [Google Scholar]
  19. Skogseid I. M., Nordby H. K., Urdal P., Paus E., Lilleaas F. Increased serum creatine kinase BB and neuron specific enolase following head injury indicates brain damage. Acta Neurochir (Wien) 1992;115(3-4):106–111. doi: 10.1007/BF01406367. [DOI] [PubMed] [Google Scholar]
  20. Smith D. H., Meaney D. F., Lenkinski R. E., Alsop D. C., Grossman R., Kimura H., McIntosh T. K., Gennarelli T. A. New magnetic resonance imaging techniques for the evaluation of traumatic brain injury. J Neurotrauma. 1995 Aug;12(4):573–577. doi: 10.1089/neu.1995.12.573. [DOI] [PubMed] [Google Scholar]
  21. Sultzer D. L., Levin H. S., Mahler M. E., High W. M., Cummings J. L. Assessment of cognitive, psychiatric, and behavioral disturbances in patients with dementia: the Neurobehavioral Rating Scale. J Am Geriatr Soc. 1992 Jun;40(6):549–555. doi: 10.1111/j.1532-5415.1992.tb02101.x. [DOI] [PubMed] [Google Scholar]
  22. Teasdale G., Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974 Jul 13;2(7872):81–84. doi: 10.1016/s0140-6736(74)91639-0. [DOI] [PubMed] [Google Scholar]
  23. Thatcher R. W., Camacho M., Salazar A., Linden C., Biver C., Clarke L. Quantitative MRI of the gray-white matter distribution in traumatic brain injury. J Neurotrauma. 1997 Jan;14(1):1–14. doi: 10.1089/neu.1997.14.1. [DOI] [PubMed] [Google Scholar]
  24. Waterloo K., Ingebrigtsen T., Romner B. Neuropsychological function in patients with increased serum levels of protein S-100 after minor head injury. Acta Neurochir (Wien) 1997;139(1):26–32. doi: 10.1007/BF01850864. [DOI] [PubMed] [Google Scholar]
  25. Woertgen C., Rothoerl R. D., Holzschuh M., Metz C., Brawanski A. Comparison of serial S-100 and NSE serum measurements after severe head injury. Acta Neurochir (Wien) 1997;139(12):1161–1165. doi: 10.1007/BF01410977. [DOI] [PubMed] [Google Scholar]
  26. Zimmer D. B., Cornwall E. H., Landar A., Song W. The S100 protein family: history, function, and expression. Brain Res Bull. 1995;37(4):417–429. doi: 10.1016/0361-9230(95)00040-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES