Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2001 Oct;71(4):448–454. doi: 10.1136/jnnp.71.4.448

Brain temperature, body core temperature, and intracranial pressure in acute cerebral damage

S Rossi 1, E Zanier 1, I Mauri 1, A Columbo 1, N Stocchetti 1
PMCID: PMC1763520  PMID: 11561026

Abstract

OBJECTIVES—To assess the frequency of hyperthermia in a population of acute neurosurgical patients; to assess the relation between brain temperature (ICT) and core temperature (Tc); to investigate the effect of changes in brain temperature on intracranial pressure (ICP).
METHODS—The study involved 20 patients (10 severe head injury, eight subarachnoid haemorrhage, two neoplasms) with median Glasgow coma score (GCS) 6. ICP and ICT were monitored by an intraventricular catheter coupled with a thermistor. Internal Tc was measured in the pulmonary artery by a Swan-Ganz catheter.
RESULTS—Mean ICT was 38.4 (SD 0.8) and mean Tc 38.1 (SD 0.8)°C; 73% of ICT and 57.5% of Tc measurements were ⩾38°C. The mean difference between ICT and Tc was 0.3 (SD 0.3)°C (range −0.7 to 2.3°C) (p=0. 0001). Only in 12% of patients was Tc higher than ICT. The main reason for the differences between ICT and Tc was body core temperature: the difference between ICT and Tc increased significantly with body core temperature and fell significantly when this was lowered. The mean gradient between ICT and Tc was 0.16 (SD 0.31)°C before febrile episodes (ICT being higher than Tc), and 0.41 (SD 0.38)°C at the febrile peak (p<0.05). When changes in temperature were considered, ICT had a profound influence on ICP. Increases in ICT were associated with a significant rise in ICP, from 14.9(SD 7.9) to 22 (SD 10.4) mm Hg (p<0.05). As the fever ebbed there was a significant decrease in ICP, from 17.5 (SD 8.62) to 16 (SD 7.76) mm Hg (p=0.02).
CONCLUSIONS—Fever is extremely frequent during acute cerebral damage and ICT is significantly higher than Tc. Moreover, Tc may underestimate ICT during the phases when temperature has the most impact on the intracranial system because of the close association between increases in ICT and ICP.



Full Text

The Full Text of this article is available as a PDF (194.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bland J. M., Altman D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986 Feb 8;1(8476):307–310. [PubMed] [Google Scholar]
  2. Busto R., Dietrich W. D., Globus M. Y., Ginsberg M. D. Postischemic moderate hypothermia inhibits CA1 hippocampal ischemic neuronal injury. Neurosci Lett. 1989 Jul 3;101(3):299–304. doi: 10.1016/0304-3940(89)90549-1. [DOI] [PubMed] [Google Scholar]
  3. Busto R., Dietrich W. D., Globus M. Y., Ginsberg M. D. The importance of brain temperature in cerebral ischemic injury. Stroke. 1989 Aug;20(8):1113–1114. doi: 10.1161/01.str.20.8.1113. [DOI] [PubMed] [Google Scholar]
  4. Busto R., Dietrich W. D., Globus M. Y., Valdés I., Scheinberg P., Ginsberg M. D. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab. 1987 Dec;7(6):729–738. doi: 10.1038/jcbfm.1987.127. [DOI] [PubMed] [Google Scholar]
  5. Clasen R. A., Pandolfi S., Laing I., Casey D., Jr Experimental study of relation of fever to cerebral edema. J Neurosurg. 1974 Nov;41(5):576–581. doi: 10.3171/jns.1974.41.5.0576. [DOI] [PubMed] [Google Scholar]
  6. Clifton G. L., Jiang J. Y., Lyeth B. G., Jenkins L. W., Hamm R. J., Hayes R. L. Marked protection by moderate hypothermia after experimental traumatic brain injury. J Cereb Blood Flow Metab. 1991 Jan;11(1):114–121. doi: 10.1038/jcbfm.1991.13. [DOI] [PubMed] [Google Scholar]
  7. Clifton G. L., Miller E. R., Choi S. C., Levin H. S., McCauley S., Smith K. R., Jr, Muizelaar J. P., Wagner F. C., Jr, Marion D. W., Luerssen T. G. Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med. 2001 Feb 22;344(8):556–563. doi: 10.1056/NEJM200102223440803. [DOI] [PubMed] [Google Scholar]
  8. Dietrich W. D., Alonso O., Halley M., Busto R. Delayed posttraumatic brain hyperthermia worsens outcome after fluid percussion brain injury: a light and electron microscopic study in rats. Neurosurgery. 1996 Mar;38(3):533–541. doi: 10.1097/00006123-199603000-00023. [DOI] [PubMed] [Google Scholar]
  9. Hirashima Y., Takaba M., Endo S., Hayashi N., Yamashita K., Takaku A. Intracerebral temperature in patients with hydrocephalus of varying aetiology. J Neurol Neurosurg Psychiatry. 1998 Jun;64(6):792–794. doi: 10.1136/jnnp.64.6.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jones P. A., Andrews P. J., Midgley S., Anderson S. I., Piper I. R., Tocher J. L., Housley A. M., Corrie J. A., Slattery J., Dearden N. M. Measuring the burden of secondary insults in head-injured patients during intensive care. J Neurosurg Anesthesiol. 1994 Jan;6(1):4–14. [PubMed] [Google Scholar]
  11. Marion D. W., Obrist W. D., Carlier P. M., Penrod L. E., Darby J. M. The use of moderate therapeutic hypothermia for patients with severe head injuries: a preliminary report. J Neurosurg. 1993 Sep;79(3):354–362. doi: 10.3171/jns.1993.79.3.0354. [DOI] [PubMed] [Google Scholar]
  12. Marion D. W., Penrod L. E., Kelsey S. F., Obrist W. D., Kochanek P. M., Palmer A. M., Wisniewski S. R., DeKosky S. T. Treatment of traumatic brain injury with moderate hypothermia. N Engl J Med. 1997 Feb 20;336(8):540–546. doi: 10.1056/NEJM199702203360803. [DOI] [PubMed] [Google Scholar]
  13. Mellergård P. Intracerebral temperature in neurosurgical patients: intracerebral temperature gradients and relationships to consciousness level. Surg Neurol. 1995 Jan;43(1):91–95. doi: 10.1016/0090-3019(95)80049-m. [DOI] [PubMed] [Google Scholar]
  14. Mellergård P., Nordström C. H., Christensson M. A method for monitoring intracerebral temperature in neurosurgical patients. Neurosurgery. 1990 Oct;27(4):654–657. [PubMed] [Google Scholar]
  15. Mellergård P., Nordström C. H. Epidural temperature and possible intracerebral temperature gradients in man. Br J Neurosurg. 1990;4(1):31–38. doi: 10.3109/02688699009000679. [DOI] [PubMed] [Google Scholar]
  16. Mellergård P., Nordström C. H. Intracerebral temperature in neurosurgical patients. Neurosurgery. 1991 May;28(5):709–713. [PubMed] [Google Scholar]
  17. Michenfelder J. D., Milde J. H. The relationship among canine brain temperature, metabolism, and function during hypothermia. Anesthesiology. 1991 Jul;75(1):130–136. doi: 10.1097/00000542-199107000-00021. [DOI] [PubMed] [Google Scholar]
  18. Reith J., Jørgensen H. S., Pedersen P. M., Nakayama H., Raaschou H. O., Jeppesen L. L., Olsen T. S. Body temperature in acute stroke: relation to stroke severity, infarct size, mortality, and outcome. Lancet. 1996 Feb 17;347(8999):422–425. doi: 10.1016/s0140-6736(96)90008-2. [DOI] [PubMed] [Google Scholar]
  19. Rumana C. S., Gopinath S. P., Uzura M., Valadka A. B., Robertson C. S. Brain temperature exceeds systemic temperature in head-injured patients. Crit Care Med. 1998 Mar;26(3):562–567. doi: 10.1097/00003246-199803000-00032. [DOI] [PubMed] [Google Scholar]
  20. Shiozaki T., Sugimoto H., Taneda M., Yoshida H., Iwai A., Yoshioka T., Sugimoto T. Effect of mild hypothermia on uncontrollable intracranial hypertension after severe head injury. J Neurosurg. 1993 Sep;79(3):363–368. doi: 10.3171/jns.1993.79.3.0363. [DOI] [PubMed] [Google Scholar]
  21. Zhao W., Alonso O. F., Loor J. Y., Busto R., Ginsberg M. D. Influence of early posttraumatic hypothermia therapy on local cerebral blood flow and glucose metabolism after fluid-percussion brain injury. J Neurosurg. 1999 Mar;90(3):510–519. doi: 10.3171/jns.1999.90.3.0510. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES