Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2001 Oct;71(4):505–514. doi: 10.1136/jnnp.71.4.505

Perimetric visual field and functional MRI correlation: implications for image-guided surgery in occipital brain tumours

F Roux 1, D Ibarrola 1, J Lotterie 1, F Chollet 1, I Berry 1
PMCID: PMC1763521  PMID: 11561035

Abstract

OBJECTIVE—To compare the results of visual functional MRI with those of perimetric evaluation in patients with visual field defects and retrochiasmastic tumours and in normal subjects without visual field defect. The potential clinical usefulness of visual functional MRI data during resective surgery was evaluated in patients with occipital lobe tumours.
METHODS—Eleven patients with various tumours and visual field defects and 12 normal subjects were studied by fMRI using bimonocular or monocular repetitive photic stimulation (8 Hz). The data obtained were analyzed with the statistical parametric maps software (p<10-8) and were compared with the results of Goldmann visual field perimetric evaluation. In patients with occipital brain tumours undergoing surgery, the functional data were registered in a frameless stereotactic device and the images fused into anatomical three standard planes and three dimensional reconstructions of the brain surface.
RESULTS—Two studies of patients were discarded, one because of head motion and the other because of badly followed instructions. On the remaining patients the functional activations found in the visual cortex were consistent with the results of perimetric evaluation in all but one of the patients and all the normal subjects although the results of fMRI were highly dependent on the choices of the analysis thresholds. Visual functional MRI image guided data were used in five patients with occipital brain tumours. No added postoperative functional field defect was detected.
CONCLUSIONS—There was a good correspondence between fMRI data and the results of perimetric evaluation although dependent on the analysis thresholds. Visual fMRI data registered into a frameless stereotactic device may be useful in surgical planning and tumour removal.



Full Text

The Full Text of this article is available as a PDF (316.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atlas S. W., Howard R. S., 2nd, Maldjian J., Alsop D., Detre J. A., Listerud J., D'Esposito M., Judy K. D., Zager E., Stecker M. Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: findings and implications for clinical management. Neurosurgery. 1996 Feb;38(2):329–338. doi: 10.1097/00006123-199602000-00019. [DOI] [PubMed] [Google Scholar]
  2. Bosley T. M., Rosenquist A. C., Kushner M., Burke A., Stein A., Dann R., Cobbs W., Savino P. J., Schatz N. J., Alavi A. Ischemic lesions of the occipital cortex and optic radiations: positron emission tomography. Neurology. 1985 Apr;35(4):470–484. doi: 10.1212/wnl.35.4.470. [DOI] [PubMed] [Google Scholar]
  3. Cao Y., D'Olhaberriague L., Vikingstad E. M., Levine S. R., Welch K. M. Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis. Stroke. 1998 Jan;29(1):112–122. doi: 10.1161/01.str.29.1.112. [DOI] [PubMed] [Google Scholar]
  4. DeYoe E. A., Carman G. J., Bandettini P., Glickman S., Wieser J., Cox R., Miller D., Neitz J. Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2382–2386. doi: 10.1073/pnas.93.6.2382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fox P. T., Raichle M. E. Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography. J Neurophysiol. 1984 May;51(5):1109–1120. doi: 10.1152/jn.1984.51.5.1109. [DOI] [PubMed] [Google Scholar]
  6. Galetta S. L., Grossman R. I. The representation of the horizontal meridian in the primary visual cortex. J Neuroophthalmol. 2000 Jun;20(2):89–91. doi: 10.1097/00041327-200020020-00004. [DOI] [PubMed] [Google Scholar]
  7. Gray L. G., Galetta S. L., Siegal T., Schatz N. J. The central visual field in homonymous hemianopia. Evidence for unilateral foveal representation. Arch Neurol. 1997 Mar;54(3):312–317. doi: 10.1001/archneur.1997.00550150068018. [DOI] [PubMed] [Google Scholar]
  8. Haglund M. M., Berger M. S., Shamseldin M., Lettich E., Ojemann G. A. Cortical localization of temporal lobe language sites in patients with gliomas. Neurosurgery. 1994 Apr;34(4):567–576. doi: 10.1227/00006123-199404000-00001. [DOI] [PubMed] [Google Scholar]
  9. Hedera P., Wu D., Collins S., Lewin J. S., Miller D., Lerner A. J., Klein S., Friedland R. P. Sex and electroencephalographic synchronization after photic stimulation predict signal changes in the visual cortex on functional MR images. AJNR Am J Neuroradiol. 1998 May;19(5):853–857. [PMC free article] [PubMed] [Google Scholar]
  10. Hill D. L., Smith A. D., Simmons A., Maurer C. R., Jr, Cox T. C., Elwes R., Brammer M., Hawkes D. J., Polkey C. E. Sources of error in comparing functional magnetic resonance imaging and invasive electrophysiological recordings. J Neurosurg. 2000 Aug;93(2):214–223. doi: 10.3171/jns.2000.93.2.0214. [DOI] [PubMed] [Google Scholar]
  11. Holodny A. I., Schulder M., Liu W. C., Maldjian J. A., Kalnin A. J. Decreased BOLD functional MR activation of the motor and sensory cortices adjacent to a glioblastoma multiforme: implications for image-guided neurosurgery. AJNR Am J Neuroradiol. 1999 Apr;20(4):609–612. [PMC free article] [PubMed] [Google Scholar]
  12. Horton J. C., Hoyt W. F. The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Arch Ophthalmol. 1991 Jun;109(6):816–824. doi: 10.1001/archopht.1991.01080060080030. [DOI] [PubMed] [Google Scholar]
  13. Kitajima M., Korogi Y., Kido T., Ikeda O., Morishita S., Takahashi M. MRI in occipital lobe infarcts: classification by involvement of the striate cortex. Neuroradiology. 1998 Nov;40(11):710–715. doi: 10.1007/s002340050669. [DOI] [PubMed] [Google Scholar]
  14. Kollias S. S., Landau K., Khan N., Golay X., Bernays R., Yonekawa Y., Valavanis A. Functional evaluation using magnetic resonance imaging of the visual cortex in patients with retrochiasmatic lesions. J Neurosurg. 1998 Nov;89(5):780–790. doi: 10.3171/jns.1998.89.5.0780. [DOI] [PubMed] [Google Scholar]
  15. Le Rumeur E., Allard M., Poiseau E., Jannin P. Role of the mode of sensory stimulation in presurgical brain mapping in which functional magnetic resonance imaging is used. J Neurosurg. 2000 Sep;93(3):427–431. doi: 10.3171/jns.2000.93.3.0427. [DOI] [PubMed] [Google Scholar]
  16. Lee H. W., Hong S. B., Seo D. W., Tae W. S., Hong S. C. Mapping of functional organization in human visual cortex: electrical cortical stimulation. Neurology. 2000 Feb 22;54(4):849–854. doi: 10.1212/wnl.54.4.849. [DOI] [PubMed] [Google Scholar]
  17. Lee M., Zulauf M., Caprioli J. The influence of patient reliability on visual field outcome. Am J Ophthalmol. 1994 Jun 15;117(6):756–761. doi: 10.1016/s0002-9394(14)70318-6. [DOI] [PubMed] [Google Scholar]
  18. Lehéricy S., Duffau H., Cornu P., Capelle L., Pidoux B., Carpentier A., Auliac S., Clemenceau S., Sichez J. P., Bitar A. Correspondence between functional magnetic resonance imaging somatotopy and individual brain anatomy of the central region: comparison with intraoperative stimulation in patients with brain tumors. J Neurosurg. 2000 Apr;92(4):589–598. doi: 10.3171/jns.2000.92.4.0589. [DOI] [PubMed] [Google Scholar]
  19. Liu G. T., Fletcher D. W., Bishop R. J., Maguire M. G., Quinn G. E., Hendy P., Zimmerman R. A., Haselgrove J. C. Variability in visual cortex activation during prolonged functional magnetic resonance imaging. J Neuroophthalmol. 1998 Dec;18(4):258–262. [PubMed] [Google Scholar]
  20. Maldjian J., Atlas S. W., Howard R. S., 2nd, Greenstein E., Alsop D., Detre J. A., Listerud J., D'Esposito M., Flamm E. S. Functional magnetic resonance imaging of regional brain activity in patients with intracerebral arteriovenous malformations before surgical or endovascular therapy. J Neurosurg. 1996 Mar;84(3):477–483. doi: 10.3171/jns.1996.84.3.0477. [DOI] [PubMed] [Google Scholar]
  21. McAuley D. L., Russell R. W. Correlation of CAT scan and visual field defects in vascular lesions of the posterior visual pathways. J Neurol Neurosurg Psychiatry. 1979 Apr;42(4):298–311. doi: 10.1136/jnnp.42.4.298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McFadzean R., Brosnahan D., Hadley D., Mutlukan E. Representation of the visual field in the occipital striate cortex. Br J Ophthalmol. 1994 Mar;78(3):185–190. doi: 10.1136/bjo.78.3.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McGonigle D. J., Howseman A. M., Athwal B. S., Friston K. J., Frackowiak R. S., Holmes A. P. Variability in fMRI: an examination of intersession differences. Neuroimage. 2000 Jun;11(6 Pt 1):708–734. doi: 10.1006/nimg.2000.0562. [DOI] [PubMed] [Google Scholar]
  24. Menon R. S., Ogawa S., Hu X., Strupp J. P., Anderson P., Uğurbil K. BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: echo-planar imaging correlates with previous optical imaging using intrinsic signals. Magn Reson Med. 1995 Mar;33(3):453–459. doi: 10.1002/mrm.1910330323. [DOI] [PubMed] [Google Scholar]
  25. Miki A., Nakajima T., Takagi M., Shirakashi M., Abe H. Detection of visual dysfunction in optic atrophy by functional magnetic resonance imaging during monocular visual stimulation. Am J Ophthalmol. 1996 Sep;122(3):404–415. doi: 10.1016/s0002-9394(14)72067-7. [DOI] [PubMed] [Google Scholar]
  26. Ojemann J. G., Miller J. W., Silbergeld D. L. Preserved function in brain invaded by tumor. Neurosurgery. 1996 Aug;39(2):253–259. doi: 10.1097/00006123-199608000-00003. [DOI] [PubMed] [Google Scholar]
  27. Roux F. E., Boulanouar K., Ibarrola D., Tremoulet M., Chollet F., Berry I. Functional MRI and intraoperative brain mapping to evaluate brain plasticity in patients with brain tumours and hemiparesis. J Neurol Neurosurg Psychiatry. 2000 Oct;69(4):453–463. doi: 10.1136/jnnp.69.4.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schulder M., Maldjian J. A., Liu W. C., Holodny A. I., Kalnin A. T., Mun I. K., Carmel P. W. Functional image-guided surgery of intracranial tumors located in or near the sensorimotor cortex. J Neurosurg. 1998 Sep;89(3):412–418. doi: 10.3171/jns.1998.89.3.0412. [DOI] [PubMed] [Google Scholar]
  29. Sergent J. Brain-imaging studies of cognitive functions. Trends Neurosci. 1994 Jun;17(6):221–227. doi: 10.1016/0166-2236(94)90002-7. [DOI] [PubMed] [Google Scholar]
  30. Skirboll S. S., Ojemann G. A., Berger M. S., Lettich E., Winn H. R. Functional cortex and subcortical white matter located within gliomas. Neurosurgery. 1996 Apr;38(4):678–685. [PubMed] [Google Scholar]
  31. Stapleton S. R., Kiriakopoulos E., Mikulis D., Drake J. M., Hoffman H. J., Humphreys R., Hwang P., Otsubo H., Holowka S., Logan W. Combined utility of functional MRI, cortical mapping, and frameless stereotaxy in the resection of lesions in eloquent areas of brain in children. Pediatr Neurosurg. 1997 Feb;26(2):68–82. doi: 10.1159/000121167. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES