Abstract
OBJECTIVE—To evaluate interstitial glycerol as a marker of ischaemia by studying the changes in glycerol in direct relation to changes in regional cerebral metabolic rate of oxygen (CMRO2), the lactate/pyruvate ratio (LP ratio), and glutamate. METHODS—Transorbital 2 hour middle cerebral artery occlusion (MCAO) was performed in eight monkeys, which were studied with continuous microdialysis for 24 hours. Interstitial fluids were collected by microdialysis and analysed for glycerol, lactate, pyruvate, and glutamate with an enzymatic assay and high performance liquid chromatography. Sequential PET studies of cerebral blood flow (CBF), CMRO2, oxygen extraction ratio (OER), and cerebral blood volume (CBV) were performed. The microdialysis probe regions were classified as severe ischaemia or penumbra, depending on whether the mean CMRO2 side to side ratio was below or above 60%, respectively. RESULTS—A nine-fold, sustained increase in glycerol was registered after MCAO in severe ischaemia regions. In penumbra regions, the increase in glycerol was five-fold, but the glycerol concentration returned to baseline within 8 hours of clip removal. The difference between severe ischaemia and penumbra glycerol values was statistically significant. As expected from previous studies, the interstitial LP ratio and glutamate increased markedly in severe ischaemia, with a less pronounced change in penumbra regions. There was a time lag between the biochemical changes in severe ischaemia regions, with the LP ratio preceding glutamate, followed by glycerol. CONCLUSIONS—A marked, sustained increase in interstitial glycerol is indicative of severe ischaemia in this stroke model. A transient, diminutive increase in interstitial glycerol may reflect a penumbra situation. Interstitial glycerol in combination with other biochemical markers such as the LP ratio and glutamate may be useful for clinical monitoring of the ischaemic brain, reflecting a sequence of secondary pathophysiological events.
Full Text
The Full Text of this article is available as a PDF (178.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson J. L. A rapid and accurate method to realign PET scans utilizing image edge information. J Nucl Med. 1995 Apr;36(4):657–669. [PubMed] [Google Scholar]
- Bazán N. G., Jr Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim Biophys Acta. 1970 Oct 6;218(1):1–10. doi: 10.1016/0005-2760(70)90086-x. [DOI] [PubMed] [Google Scholar]
- Ben-Yoseph O., Badar-Goffer R. S., Morris P. G., Bachelard H. S. Glycerol 3-phosphate and lactate as indicators of the cerebral cytoplasmic redox state in severe and mild hypoxia respectively: a 13C- and 31P-n.m.r. study. Biochem J. 1993 May 1;291(Pt 3):915–919. doi: 10.1042/bj2910915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bertrand N., Ishii H., Spatz M. Regional and temporal glycerol changes induced by forebrain ischemia in gerbils. Neurosci Lett. 1992 Dec 14;148(1-2):81–84. doi: 10.1016/0304-3940(92)90809-l. [DOI] [PubMed] [Google Scholar]
- Chan P. H., Longar S., Chen S., Yu A. C., Hillered L., Chu L., Imaizumi S., Pereira B., Moore K., Woolworth V. The role of arachidonic acid and oxygen radical metabolites in the pathogenesis of vasogenic brain edema and astrocytic swelling. Ann N Y Acad Sci. 1989;559:237–247. doi: 10.1111/j.1749-6632.1989.tb22612.x. [DOI] [PubMed] [Google Scholar]
- Enblad P., Frykholm P., Valtysson J., Silander H. C., Andersson J., Fasth K. J., Watanabe Y., Långström B., Hillered L., Persson L. Middle cerebral artery occlusion and reperfusion in primates monitored by microdialysis and sequential positron emission tomography. Stroke. 2001 Jul;32(7):1574–1580. doi: 10.1161/01.str.32.7.1574. [DOI] [PubMed] [Google Scholar]
- Enblad P., Valtysson J., Andersson J., Lilja A., Valind S., Antoni G., Långström B., Hillered L., Persson L. Simultaneous intracerebral microdialysis and positron emission tomography in the detection of ischemia in patients with subarachnoid hemorrhage. J Cereb Blood Flow Metab. 1996 Jul;16(4):637–644. doi: 10.1097/00004647-199607000-00014. [DOI] [PubMed] [Google Scholar]
- Farooqui A. A., Horrocks L. A. Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int Rev Neurobiol. 1994;36:267–323. doi: 10.1016/s0074-7742(08)60306-2. [DOI] [PubMed] [Google Scholar]
- Fiskum G., Murphy A. N., Beal M. F. Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. J Cereb Blood Flow Metab. 1999 Apr;19(4):351–369. doi: 10.1097/00004647-199904000-00001. [DOI] [PubMed] [Google Scholar]
- Foster K. J., Alberti K. G., Hinks L., Lloyd B., Postle A., Smythe P., Turnell D. C., Walton R. Blood intermediary metabolite and insulin concentrations after an overnight fast: reference ranges for adults, and interrelations. Clin Chem. 1978 Sep;24(9):1568–1572. [PubMed] [Google Scholar]
- Frackowiak R. S., Lenzi G. L., Jones T., Heather J. D. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr. 1980 Dec;4(6):727–736. doi: 10.1097/00004728-198012000-00001. [DOI] [PubMed] [Google Scholar]
- Frykholm P., Andersson J. L., Valtysson J., Silander H. C., Hillered L., Persson L., Olsson Y., Yu W. R., Westerberg G., Watanabe Y. A metabolic threshold of irreversible ischemia demonstrated by PET in a middle cerebral artery occlusion-reperfusion primate model. Acta Neurol Scand. 2000 Jul;102(1):18–26. doi: 10.1034/j.1600-0404.2000.102001018.x. [DOI] [PubMed] [Google Scholar]
- Gercken G., Bräuning C. Quantitative determination of hydrolysis products of phospholipids in the ischaemic rat brain. Pflugers Arch. 1973 Nov 28;344(3):207–215. doi: 10.1007/BF00588461. [DOI] [PubMed] [Google Scholar]
- Hallström A., Carlsson A., Hillered L., Ungerstedt U. Simultaneous determination of lactate, pyruvate, and ascorbate in microdialysis samples from rat brain, blood, fat, and muscle using high-performance liquid chromatography. J Pharmacol Methods. 1989 Sep;22(2):113–124. doi: 10.1016/0160-5402(89)90040-5. [DOI] [PubMed] [Google Scholar]
- Hillered L., Ernster L. Respiratory activity of isolated rat brain mitochondria following in vitro exposure to oxygen radicals. J Cereb Blood Flow Metab. 1983 Jun;3(2):207–214. doi: 10.1038/jcbfm.1983.28. [DOI] [PubMed] [Google Scholar]
- Hillered L., Hallström A., Segersvärd S., Persson L., Ungerstedt U. Dynamics of extracellular metabolites in the striatum after middle cerebral artery occlusion in the rat monitored by intracerebral microdialysis. J Cereb Blood Flow Metab. 1989 Oct;9(5):607–616. doi: 10.1038/jcbfm.1989.87. [DOI] [PubMed] [Google Scholar]
- Hillered L., Valtysson J., Enblad P., Persson L. Interstitial glycerol as a marker for membrane phospholipid degradation in the acutely injured human brain. J Neurol Neurosurg Psychiatry. 1998 Apr;64(4):486–491. doi: 10.1136/jnnp.64.4.486. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holte S., Eriksson L., Dahlbom M. A preliminary evaluation of the Scanditronix PC2048-15B brain scanner. Eur J Nucl Med. 1989;15(11):719–721. doi: 10.1007/BF00631763. [DOI] [PubMed] [Google Scholar]
- Hudgins W. R., Garcia J. H. Transorbital approach to the middle cerebral artery of the squirrel monkey: a technique for experimental cerebral infarction applicable to ultrastructural studies. Stroke. 1970 Mar-Apr;1(2):107–111. doi: 10.1161/01.str.1.2.107. [DOI] [PubMed] [Google Scholar]
- Kehr J. A survey on quantitative microdialysis: theoretical models and practical implications. J Neurosci Methods. 1993 Jul;48(3):251–261. doi: 10.1016/0165-0270(93)90096-a. [DOI] [PubMed] [Google Scholar]
- Kuroda S., Katsura K., Hillered L., Bates T. E., Siesjö B. K. Delayed treatment with alpha-phenyl-N-tert-butyl nitrone (PBN) attenuates secondary mitochondrial dysfunction after transient focal cerebral ischemia in the rat. Neurobiol Dis. 1996 Apr;3(2):149–157. doi: 10.1006/nbdi.1996.0015. [DOI] [PubMed] [Google Scholar]
- Lammertsma A. A., Jones T., Frackowiak R. S., Lenzi G. L. A theoretical study of the steady-state model for measuring regional cerebral blood flow and oxygen utilisation using oxygen-15. J Comput Assist Tomogr. 1981 Aug;5(4):544–550. doi: 10.1097/00004728-198108000-00016. [DOI] [PubMed] [Google Scholar]
- Lewén A., Hillered L. Involvement of reactive oxygen species in membrane phospholipid breakdown and energy perturbation after traumatic brain injury in the rat. J Neurotrauma. 1998 Jul;15(7):521–530. doi: 10.1089/neu.1998.15.521. [DOI] [PubMed] [Google Scholar]
- Marklund N., Salci K., Lewén A., Hillered L. Glycerol as a marker for post-traumatic membrane phospholipid degradation in rat brain. Neuroreport. 1997 Apr 14;8(6):1457–1461. doi: 10.1097/00001756-199704140-00026. [DOI] [PubMed] [Google Scholar]
- Murphy A. N., Fiskum G., Beal M. F. Mitochondria in neurodegeneration: bioenergetic function in cell life and death. J Cereb Blood Flow Metab. 1999 Mar;19(3):231–245. doi: 10.1097/00004647-199903000-00001. [DOI] [PubMed] [Google Scholar]
- O'Brien M. D., Waltz A. G. Transorbital approach for occluding the middle cerebral artery without craniectomy. Stroke. 1973 Mar-Apr;4(2):201–206. doi: 10.1161/01.str.4.2.201. [DOI] [PubMed] [Google Scholar]
- Paschen W., van den Kerchhoff W., Hossmann K. A. Glycerol as an indicator of lipid degradation in bicuculline-induced seizures and experimental cerebral ischemia. Metab Brain Dis. 1986 Mar;1(1):37–44. doi: 10.1007/BF00998475. [DOI] [PubMed] [Google Scholar]
- Piantadosi C. A., Zhang J. Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. Stroke. 1996 Feb;27(2):327–332. doi: 10.1161/01.str.27.2.327. [DOI] [PubMed] [Google Scholar]
- Reid M. S., Herrera-Marschitz M., Kehr J., Ungerstedt U. Striatal dopamine and glutamate release: effects of intranigral injections of substance P. Acta Physiol Scand. 1990 Dec;140(4):527–537. doi: 10.1111/j.1748-1716.1990.tb09030.x. [DOI] [PubMed] [Google Scholar]
- Siesjö B. K., Katsura K. Ischemic brain damage: focus on lipids and lipid mediators. Adv Exp Med Biol. 1992;318:41–56. doi: 10.1007/978-1-4615-3426-6_5. [DOI] [PubMed] [Google Scholar]
