Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2004 May;75(5):717–722. doi: 10.1136/jnnp.2002.004754

Electromagnetic function of polymicrogyric cortex in congenital bilateral perisylvian syndrome

R Paetau 1, J Saraneva 1, O Salonen 1, L Valanne 1, J Ignatius 1, S Salenius 1
PMCID: PMC1763559  PMID: 15090566

Abstract

Background: Congenital bilateral perisylvian syndrome (CBPS) is characterised by bilateral perisylvian polymicrogyria and suprabulbar paresis. Mild tetraparesis, cognitive impairment, and epilepsy are frequently associated. Sensory deficits are surprisingly rare, even though polymicrogyria often extends to auditory and sensorimotor cortex.

Objectives: To study the sensorimotor and auditory cortex function and location in CBPS patients.

Methods: We mapped the sensory and motor cortex function onto brain magnetic resonance images in six CBPS patients and seven control subjects using sources of somatosensory and auditory evoked magnetic fields, and of rhythmic magnetoencephalographic (MEG) activity phase-locked to surface electromyogram (EMG) during voluntary hand muscle contraction.

Results: MEG-EMG coherence in CBPS patients varied from normal (if normal central sulcus anatomy) to absent, and could occur at abnormally low frequency. Coherent MEG activity was generated at the central sulcus or in the polymicrogyric frontoparietal cortex. Somatosensory and auditory evoked responses were preserved and also originated within the polymicrogyric cortex, but the locations of some source components could be grossly shifted.

Conclusion: Plastic changes of sensory and motor cortex location suggest disturbed cortex organisation in CBPS patients. Because the polymicrogyric cortex of CBPS patients may embed normal functions in unexpected locations, functional mapping should be considered before brain surgery.

Full Text

The Full Text of this article is available as a PDF (438.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison T., McCarthy G., Wood C. C., Jones S. J. Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings. Brain. 1991 Dec;114(Pt 6):2465–2503. doi: 10.1093/brain/114.6.2465. [DOI] [PubMed] [Google Scholar]
  2. Barkovich A. J., Kjos B. O. Nonlissencephalic cortical dysplasias: correlation of imaging findings with clinical deficits. AJNR Am J Neuroradiol. 1992 Jan-Feb;13(1):95–103. [PMC free article] [PubMed] [Google Scholar]
  3. Barth P. G. Disorders of neuronal migration. Can J Neurol Sci. 1987 Feb;14(1):1–16. doi: 10.1017/s031716710002610x. [DOI] [PubMed] [Google Scholar]
  4. Becker P. S. Developmental Foix-Chavany-Marie syndrome: polymicrogyria or macrogyria? Ann Neurol. 1990 Jun;27(6):693–694. doi: 10.1002/ana.410270623. [DOI] [PubMed] [Google Scholar]
  5. Becker P. S., Dixon A. M., Troncoso J. C. Bilateral opercular polymicrogyria. Ann Neurol. 1989 Jan;25(1):90–92. doi: 10.1002/ana.410250115. [DOI] [PubMed] [Google Scholar]
  6. Borgatti R., Triulzi F., Zucca C., Piccinelli P., Balottin U., Carrozzo R., Guerrini R. Bilateral perisylvian polymicrogyria in three generations. Neurology. 1999 Jun 10;52(9):1910–1913. doi: 10.1212/wnl.52.9.1910. [DOI] [PubMed] [Google Scholar]
  7. Eriksson S. H., Thom M., Heffernan J., Lin W. R., Harding B. N., Squier M. V., Sisodiya S. M. Persistent reelin-expressing Cajal-Retzius cells in polymicrogyria. Brain. 2001 Jul;124(Pt 7):1350–1361. doi: 10.1093/brain/124.7.1350. [DOI] [PubMed] [Google Scholar]
  8. Forss N., Hari R., Salmelin R., Ahonen A., Hämäläinen M., Kajola M., Knuutila J., Simola J. Activation of the human posterior parietal cortex by median nerve stimulation. Exp Brain Res. 1994;99(2):309–315. doi: 10.1007/BF00239597. [DOI] [PubMed] [Google Scholar]
  9. Gropman A. L., Barkovich A. J., Vezina L. G., Conry J. A., Dubovsky E. C., Packer R. J. Pediatric congenital bilateral perisylvian syndrome: clinical and MRI features in 12 patients. Neuropediatrics. 1997 Aug;28(4):198–203. doi: 10.1055/s-2007-973700. [DOI] [PubMed] [Google Scholar]
  10. Guerreiro M. M., Andermann E., Guerrini R., Dobyns W. B., Kuzniecky R., Silver K., Van Bogaert P., Gillain C., David P., Ambrosetto G. Familial perisylvian polymicrogyria: a new familial syndrome of cortical maldevelopment. Ann Neurol. 2000 Jul;48(1):39–48. [PubMed] [Google Scholar]
  11. Guerrini R., Dravet C., Raybaud C., Roger J., Bureau M., Battaglia A., Livet M. O., Colicchio G., Robain O. Neurological findings and seizure outcome in children with bilateral opercular macrogyric-like changes detected by MRI. Dev Med Child Neurol. 1992 Aug;34(8):694–705. doi: 10.1111/j.1469-8749.1992.tb11505.x. [DOI] [PubMed] [Google Scholar]
  12. Hari R., Aittoniemi K., Järvinen M. L., Katila T., Varpula T. Auditory evoked transient and sustained magnetic fields of the human brain. Localization of neural generators. Exp Brain Res. 1980;40(2):237–240. doi: 10.1007/BF00237543. [DOI] [PubMed] [Google Scholar]
  13. Innocenti G. M., Maeder P., Knyazeva M. G., Fornari E., Deonna T. Functional activation of microgyric visual cortex in a human. Ann Neurol. 2001 Nov;50(5):672–676. doi: 10.1002/ana.1262. [DOI] [PubMed] [Google Scholar]
  14. Jacobs K. M., Mogensen M., Warren E., Prince D. A. Experimental microgyri disrupt the barrel field pattern in rat somatosensory cortex. Cereb Cortex. 1999 Oct-Nov;9(7):733–744. doi: 10.1093/cercor/9.7.733. [DOI] [PubMed] [Google Scholar]
  15. Kuzniecky R., Andermann F., Guerrini R. Congenital bilateral perisylvian syndrome: study of 31 patients. The CBPS Multicenter Collaborative Study. Lancet. 1993 Mar 6;341(8845):608–612. doi: 10.1016/0140-6736(93)90363-l. [DOI] [PubMed] [Google Scholar]
  16. Kuzniecky R., Andermann F. The congenital bilateral perisylvian syndrome: imaging findings in a multicenter study. CBPS Study Group. AJNR Am J Neuroradiol. 1994 Jan;15(1):139–144. [PMC free article] [PubMed] [Google Scholar]
  17. Kuzniecky R., Hetherington H., Pan J., Hugg J., Palmer C., Gilliam F., Faught E., Morawetz R. Proton spectroscopic imaging at 4.1 tesla in patients with malformations of cortical development and epilepsy. Neurology. 1997 Apr;48(4):1018–1024. doi: 10.1212/wnl.48.4.1018. [DOI] [PubMed] [Google Scholar]
  18. Maegaki Y., Yamamoto T., Takeshita K. Plasticity of central motor and sensory pathways in a case of unilateral extensive cortical dysplasia: investigation of magnetic resonance imaging, transcranial magnetic stimulation, and short-latency somatosensory evoked potentials. Neurology. 1995 Dec;45(12):2255–2261. doi: 10.1212/wnl.45.12.2255. [DOI] [PubMed] [Google Scholar]
  19. Miller S. P., Shevell M., Rosenblatt B., Silver K., O'Gorman A., Andermann F. Congenital bilateral perisylvian polymicrogyria presenting as congenital hemiplegia. Neurology. 1998 Jun;50(6):1866–1869. doi: 10.1212/wnl.50.6.1866. [DOI] [PubMed] [Google Scholar]
  20. Patton M. A., Baraitser M., Brett E. M. A family with congenital suprabulbar paresis (Worster-Drought syndrome). Clin Genet. 1986 Feb;29(2):147–150. doi: 10.1111/j.1399-0004.1986.tb01239.x. [DOI] [PubMed] [Google Scholar]
  21. Salenius S., Portin K., Kajola M., Salmelin R., Hari R. Cortical control of human motoneuron firing during isometric contraction. J Neurophysiol. 1997 Jun;77(6):3401–3405. doi: 10.1152/jn.1997.77.6.3401. [DOI] [PubMed] [Google Scholar]
  22. Van Bogaert P., David P., Gillain C. A., Wikler D., Damhaut P., Scalais E., Nuttin C., Wetzburger C., Szliwowski H. B., Metens T. Perisylvian dysgenesis. Clinical, EEG, MRI and glucose metabolism features in 10 patients. Brain. 1998 Dec;121(Pt 12):2229–2238. doi: 10.1093/brain/121.12.2229. [DOI] [PubMed] [Google Scholar]
  23. Vossler D. G., Wilkus R. J., Pilcher W. H., Farwell J. R. Epilepsy in schizencephaly: abnormal cortical organization studied by somatosensory evoked potentials. Epilepsia. 1992 May-Jun;33(3):487–494. doi: 10.1111/j.1528-1157.1992.tb01697.x. [DOI] [PubMed] [Google Scholar]
  24. Weller M. Anterior opercular cortex lesions cause dissociated lower cranial nerve palsies and anarthria but no aphasia: Foix-Chavany-Marie syndrome and "automatic voluntary dissociation" revisited. J Neurol. 1993;240(4):199–208. doi: 10.1007/BF00818705. [DOI] [PubMed] [Google Scholar]
  25. Williams R. S., Ferrante R. J., Caviness V. S., Jr The cellular pathology of microgyria. A Golgi analysis. Acta Neuropathol. 1976 Nov 15;36(3):269–283. doi: 10.1007/BF00685371. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES