Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2004 May;75(5):723–726. doi: 10.1136/jnnp.2003.025031

Molecular-genetic characterisation of gliomas that recur as same grade or higher grade tumours

T Hulsebos 1, D Troost 1, S Leenstra 1
PMCID: PMC1763568  PMID: 15090567

Abstract

Background: Due to their invasive growth, gliomas usually cannot be removed completely and almost always recur as same grade or higher grade malignancies.

Objective: To determine whether there were differences in the accumulation of genetic changes between the two types of glioma recurrence.

Methods: We genetically characterised 14 cases of lower grade glioma with a same grade recurrence, 12 cases of glioblastoma recurrence, and 14 cases of lower grade glioma with a higher grade recurrence. We investigated LOH (loss of heterozygosity) at 1p36, 10p15, the PTEN region in 10q23, the DMBT1 region in 10q25, 19q13, 22q13, LOH and mutation of TP53, and EGFR amplification.

Results: Genetic heterogeneity in the primary tumour was inferred in 3 cases of lower grade glioma with a higher grade recurrence. The cases of lower grade glioma with a higher grade recurrence displayed increased genetic instability in the recurrence (mean of 2.0 additional genetic changes per case) compared to cases with a same lower grade recurrence or those with a glioblastoma recurrence (mean of 0.6 and 0.8 additional changes per case, respectively). Compared to unselected primary glioblastomas, the glioblastomas that recurred as an operable tumour had infrequent EGFR amplification (8% v 30–40% of cases).

Conclusions: Gliomas recurring as higher grade lesions might be genetically heterogeneous and accumulate more genetic changes than gliomas recurring as same grade lesions (whether originally low or high grade). Primary glioblastomas from patients for which the recurrence is operated because of prognostically more favourable clinical indices have infrequent EGFR amplification.

Full Text

The Full Text of this article is available as a PDF (286.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cairncross J. G., Ueki K., Zlatescu M. C., Lisle D. K., Finkelstein D. M., Hammond R. R., Silver J. S., Stark P. C., Macdonald D. R., Ino Y. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst. 1998 Oct 7;90(19):1473–1479. doi: 10.1093/jnci/90.19.1473. [DOI] [PubMed] [Google Scholar]
  2. Dong Zhi-Qian, Pang Jesse Chung-Sean, Tong Carol Yuen-Kwan, Zhou Liang-Fu, Ng Ho-Keung. Clonality of oligoastrocytomas. Hum Pathol. 2002 May;33(5):528–535. doi: 10.1053/hupa.2002.124784. [DOI] [PubMed] [Google Scholar]
  3. Hamelin R., Jego N., Laurent-Puig P., Vidaud M., Thomas G. Efficient screening of p53 mutations by denaturing gradient gel electrophoresis in colorectal tumors. Oncogene. 1993 Aug;8(8):2213–2220. [PubMed] [Google Scholar]
  4. Hulsebos T. J., Oskam N. T., Troost D., Leenstra S., Bijleveld E. H. Dynamics of genetic alterations associated with glioma recurrence. Genes Chromosomes Cancer. 1998 Oct;23(2):153–158. [PubMed] [Google Scholar]
  5. Ino Y., Silver J. S., Blazejewski L., Nishikawa R., Matsutani M., von Deimling A., Louis D. N. Common regions of deletion on chromosome 22q12.3-q13.1 and 22q13.2 in human astrocytomas appear related to malignancy grade. J Neuropathol Exp Neurol. 1999 Aug;58(8):881–885. doi: 10.1097/00005072-199908000-00010. [DOI] [PubMed] [Google Scholar]
  6. Ishii N., Tada M., Hamou M. F., Janzer R. C., Meagher-Villemure K., Wiestler O. D., Tribolet N., Van Meir E. G. Cells with TP53 mutations in low grade astrocytic tumors evolve clonally to malignancy and are an unfavorable prognostic factor. Oncogene. 1999 Oct 21;18(43):5870–5878. doi: 10.1038/sj.onc.1203241. [DOI] [PubMed] [Google Scholar]
  7. Jain A. N., Chin K., Børresen-Dale A. L., Erikstein B. K., Eynstein Lonning P., Kaaresen R., Gray J. W. Quantitative analysis of chromosomal CGH in human breast tumors associates copy number abnormalities with p53 status and patient survival. Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7952–7957. doi: 10.1073/pnas.151241198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kleihues P., Ohgaki H. Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro Oncol. 1999 Jan;1(1):44–51. doi: 10.1093/neuonc/1.1.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Leenstra S., Oskam N. T., Bijleveld E. H., Bosch D. A., Troost D., Hulsebos T. J. Genetic sub-types of human malignant astrocytoma correlate with survival. Int J Cancer. 1998 Apr 17;79(2):159–165. doi: 10.1002/(sici)1097-0215(19980417)79:2<159::aid-ijc11>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
  10. Nowell P. C. The clonal evolution of tumor cell populations. Science. 1976 Oct 1;194(4260):23–28. doi: 10.1126/science.959840. [DOI] [PubMed] [Google Scholar]
  11. Oskam N. T., Bijleveld E. H., Hulsebos T. J. A region of common deletion in 22q13.3 in human glioma associated with astrocytoma progression. Int J Cancer. 2000 Feb 1;85(3):336–339. [PubMed] [Google Scholar]
  12. Reifenberger J., Ring G. U., Gies U., Cobbers L., Oberstrass J., An H. X., Niederacher D., Wechsler W., Reifenberger G. Analysis of p53 mutation and epidermal growth factor receptor amplification in recurrent gliomas with malignant progression. J Neuropathol Exp Neurol. 1996 Jul;55(7):822–831. doi: 10.1097/00005072-199607000-00007. [DOI] [PubMed] [Google Scholar]
  13. Schlegel J., Merdes A., Stumm G., Albert F. K., Forsting M., Hynes N., Kiessling M. Amplification of the epidermal-growth-factor-receptor gene correlates with different growth behaviour in human glioblastoma. Int J Cancer. 1994 Jan 2;56(1):72–77. doi: 10.1002/ijc.2910560114. [DOI] [PubMed] [Google Scholar]
  14. Schmidt Matthias C., Antweiler Sven, Urban Nina, Mueller Wolf, Kuklik A., Meyer-Puttlitz Birgit, Wiestler Otmar D., Louis David N., Fimmers Rolf, von Deimling Andreas. Impact of genotype and morphology on the prognosis of glioblastoma. J Neuropathol Exp Neurol. 2002 Apr;61(4):321–328. doi: 10.1093/jnen/61.4.321. [DOI] [PubMed] [Google Scholar]
  15. Ware M. L., Berger M. S., Binder D. K. Molecular biology of glioma tumorigenesis. Histol Histopathol. 2003 Jan;18(1):207–216. doi: 10.14670/HH-18.207. [DOI] [PubMed] [Google Scholar]
  16. von Deimling A., Fimmers R., Schmidt M. C., Bender B., Fassbender F., Nagel J., Jahnke R., Kaskel P., Duerr E. M., Koopmann J. Comprehensive allelotype and genetic anaysis of 466 human nervous system tumors. J Neuropathol Exp Neurol. 2000 Jun;59(6):544–558. doi: 10.1093/jnen/59.6.544. [DOI] [PubMed] [Google Scholar]
  17. von Deimling A., von Ammon K., Schoenfeld D., Wiestler O. D., Seizinger B. R., Louis D. N. Subsets of glioblastoma multiforme defined by molecular genetic analysis. Brain Pathol. 1993 Jan;3(1):19–26. doi: 10.1111/j.1750-3639.1993.tb00721.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES