Skip to main content
Occupational and Environmental Medicine logoLink to Occupational and Environmental Medicine
. 2004 Sep;61(9):779–785. doi: 10.1136/oem.2003.011627

Airway inflammation in aluminium potroom asthma

T Sjaheim 1, T Halstensen 1, M Lund 1, O Bjortuft 1, P Drablos 1, D Malterud 1, J Kongerud 1
PMCID: PMC1763667  PMID: 15317920

Abstract

Aims: To examine whether asthma induced by exposure to aluminium potroom emissions (potroom asthma) is associated with inflammatory changes in the airways.

Methods: Bronchial biopsy specimens from 20 asthmatic workers (8 non-smokers and 12 smokers), 15 healthy workers (8 non-smokers and 7 smokers), and 10 non-exposed controls (all non-smokers) were analysed. Immunohistofluorescent staining was performed to identify mucosal total leucocytes (CD45+ leucocytes), neutrophils, and mast cells.

Results: Median RBM thickness was significantly increased in both asthmatic workers (8.2 µm) and healthy workers (7.4 µm) compared to non-exposed controls (6.7 µm). Non-smoking asthmatic workers had significantly increased median density of lamina propria CD45+ leucocytes (1519 cells/mm2v 660 and 887 cells/mm2) and eosinophils (27 cells/mm2v 10 and 3 cells/mm2) and significantly increased concentrations of exhaled NO (18.1 ppb v 6.5 and 5.1 ppb) compared to non-smoking healthy workers and non-exposed controls. Leucocyte counts and exhaled NO concentrations varied with smoking habits and fewer leucocytes were observed in asthmatic smokers than in non-smokers Asthmatic smokers had significantly increased numbers of eosinophils in lamina propria compared to non-exposed controls (10 v 3 cells/mm2). Both eosinophilic and non-eosinophilic phenotypes of asthma were recognised in the potroom workers and signs of airway inflammation were also observed in healthy workers.

Conclusions: Airway inflammation is a central feature of potroom asthma and exposure to potroom emissions induces pathological alterations similar to those described in other types of asthma. Cigarette smoking seems to affect the underlying mechanisms involved in asthma, as the cellular composition of airway mucosa appears different in asthmatic smokers and non-smokers.

Full Text

The Full Text of this article is available as a PDF (853.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson M. J., Wlodarczyk J. H., Saunders N. A., Hensley M. J. Does aluminum smelting cause lung disease? Am Rev Respir Dis. 1989 Apr;139(4):1042–1057. doi: 10.1164/ajrccm/139.4.1042. [DOI] [PubMed] [Google Scholar]
  2. Amin K., Ekberg-Jansson A., Löfdahl C-G, Venge P. Relationship between inflammatory cells and structural changes in the lungs of asymptomatic and never smokers: a biopsy study. Thorax. 2003 Feb;58(2):135–142. doi: 10.1136/thorax.58.2.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anees W., Huggins V., Pavord I. D., Robertson A. S., Burge P. S. Occupational asthma due to low molecular weight agents: eosinophilic and non-eosinophilic variants. Thorax. 2002 Mar;57(3):231–236. doi: 10.1136/thorax.57.3.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boulet L. P., Laviolette M., Turcotte H., Cartier A., Dugas M., Malo J. L., Boutet M. Bronchial subepithelial fibrosis correlates with airway responsiveness to methacholine. Chest. 1997 Jul;112(1):45–52. doi: 10.1378/chest.112.1.45. [DOI] [PubMed] [Google Scholar]
  5. Busse W. W., Lemanske R. F., Jr Asthma. N Engl J Med. 2001 Feb 1;344(5):350–362. doi: 10.1056/NEJM200102013440507. [DOI] [PubMed] [Google Scholar]
  6. Chalmers G. W., MacLeod K. J., Thomson L., Little S. A., McSharry C., Thomson N. C. Smoking and airway inflammation in patients with mild asthma. Chest. 2001 Dec;120(6):1917–1922. doi: 10.1378/chest.120.6.1917. [DOI] [PubMed] [Google Scholar]
  7. Chan-Yeung M., Lam S. Occupational asthma. Am Rev Respir Dis. 1986 Apr;133(4):686–703. doi: 10.1164/arrd.1986.133.4.686. [DOI] [PubMed] [Google Scholar]
  8. Desjardins A., Bergeron J. P., Ghezzo H., Cartier A., Malo J. L. Aluminium potroom asthma confirmed by monitoring of forced expiratory volume in one second. Am J Respir Crit Care Med. 1994 Dec;150(6 Pt 1):1714–1717. doi: 10.1164/ajrccm.150.6.7952639. [DOI] [PubMed] [Google Scholar]
  9. Di Stefano A., Saetta M., Maestrelli P., Milani G., Pivirotto F., Mapp C. E., Fabbri L. M. Mast cells in the airway mucosa and rapid development of occupational asthma induced by toluene diisocyanate. Am Rev Respir Dis. 1993 Apr;147(4):1005–1009. doi: 10.1164/ajrccm/147.4.1005. [DOI] [PubMed] [Google Scholar]
  10. Djukanović R., Wilson J. W., Britten K. M., Wilson S. J., Walls A. F., Roche W. R., Howarth P. H., Holgate S. T. Quantitation of mast cells and eosinophils in the bronchial mucosa of symptomatic atopic asthmatics and healthy control subjects using immunohistochemistry. Am Rev Respir Dis. 1990 Oct;142(4):863–871. doi: 10.1164/ajrccm/142.4.863. [DOI] [PubMed] [Google Scholar]
  11. Douwes J., Gibson P., Pekkanen J., Pearce N. Non-eosinophilic asthma: importance and possible mechanisms. Thorax. 2002 Jul;57(7):643–648. doi: 10.1136/thorax.57.7.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Frew A. J., Chan H., Lam S., Chan-Yeung M. Bronchial inflammation in occupational asthma due to western red cedar. Am J Respir Crit Care Med. 1995 Feb;151(2 Pt 1):340–344. doi: 10.1164/ajrccm.151.2.7842189. [DOI] [PubMed] [Google Scholar]
  13. Gibson P. G., Simpson J. L., Saltos N. Heterogeneity of airway inflammation in persistent asthma : evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest. 2001 May;119(5):1329–1336. doi: 10.1378/chest.119.5.1329. [DOI] [PubMed] [Google Scholar]
  14. Holt P. G. Immune and inflammatory function in cigarette smokers. Thorax. 1987 Apr;42(4):241–249. doi: 10.1136/thx.42.4.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jahnsen F. L., Haraldsen G., Rugtveit J., Halstensen T. S., Brandtzaeg P. Differential interference contrast microscopy combined with immunofluorescence: a new method to phenotype eosinophils in situ. J Immunol Methods. 1994 Jul 12;173(1):77–91. doi: 10.1016/0022-1759(94)90285-2. [DOI] [PubMed] [Google Scholar]
  16. Jeffery P. K. Remodeling in asthma and chronic obstructive lung disease. Am J Respir Crit Care Med. 2001 Nov 15;164(10 Pt 2):S28–S38. doi: 10.1164/ajrccm.164.supplement_2.2106061. [DOI] [PubMed] [Google Scholar]
  17. Kharitonov S. A., Yates D., Robbins R. A., Logan-Sinclair R., Shinebourne E. A., Barnes P. J. Increased nitric oxide in exhaled air of asthmatic patients. Lancet. 1994 Jan 15;343(8890):133–135. doi: 10.1016/s0140-6736(94)90931-8. [DOI] [PubMed] [Google Scholar]
  18. Kongerud J., Grønnesby J. K., Magnus P. Respiratory symptoms and lung function of aluminum potroom workers. Scand J Work Environ Health. 1990 Aug;16(4):270–277. doi: 10.5271/sjweh.1785. [DOI] [PubMed] [Google Scholar]
  19. Kongerud J., Samuelsen S. O. A longitudinal study of respiratory symptoms in aluminum potroom workers. Am Rev Respir Dis. 1991 Jul;144(1):10–16. doi: 10.1164/ajrccm/144.1.10. [DOI] [PubMed] [Google Scholar]
  20. Kongerud J., Søyseth V., Burge S. Serial measurements of peak expiratory flow and responsiveness to methacholine in the diagnosis of aluminium potroom asthma. Thorax. 1992 Apr;47(4):292–297. doi: 10.1136/thx.47.4.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kongerud J., Søyseth V. Methacholine responsiveness, respiratory symptoms and pulmonary function in aluminum potroom workers. Eur Respir J. 1991 Feb;4(2):159–166. [PubMed] [Google Scholar]
  22. Lund K., Refsnes M., Sandstrøm T., Søstrand P., Schwarze P., Boe J., Kongerud J. Increased CD3 positive cells in bronchoalveolar lavage fluid after hydrogen fluoride inhalation. Scand J Work Environ Health. 1999 Aug;25(4):326–334. doi: 10.5271/sjweh.442. [DOI] [PubMed] [Google Scholar]
  23. Lund M. B., Oksne P. I., Hamre R., Kongerud J. Increased nitric oxide in exhaled air: an early marker of asthma in non-smoking aluminium potroom workers? Occup Environ Med. 2000 Apr;57(4):274–278. doi: 10.1136/oem.57.4.274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ordoñez C., Ferrando R., Hyde D. M., Wong H. H., Fahy J. V. Epithelial desquamation in asthma: artifact or pathology? Am J Respir Crit Care Med. 2000 Dec;162(6):2324–2329. doi: 10.1164/ajrccm.162.6.2001041. [DOI] [PubMed] [Google Scholar]
  25. Park H. S., Hwang S. C., Nahm D. H., Yim H. E. Immunohistochemical characterization of the cellular infiltrate in airway mucosa of toluene diisocyanate (TDI)-induced asthma: comparison with allergic asthma. J Korean Med Sci. 1998 Feb;13(1):21–26. doi: 10.3346/jkms.1998.13.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Park H. S., Jung K. S., Hwang S. C., Nahm D. H., Yim H. E. Neutrophil infiltration and release of IL-8 in airway mucosa from subjects with grain dust-induced occupational asthma. Clin Exp Allergy. 1998 Jun;28(6):724–730. doi: 10.1046/j.1365-2222.1998.00299.x. [DOI] [PubMed] [Google Scholar]
  27. Quanjer P. H., Tammeling G. J., Cotes J. E., Pedersen O. F., Peslin R., Yernault J. C. Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl. 1993 Mar;16:5–40. [PubMed] [Google Scholar]
  28. Robbins Clinton S., Dawe David E., Goncharova Susanna I., Pouladi Mahmoud A., Drannik Anna G., Swirski Filip K., Cox Gerard, Stämpfli Martin R. Cigarette smoke decreases pulmonary dendritic cells and impacts antiviral immune responsiveness. Am J Respir Cell Mol Biol. 2003 Aug 14;30(2):202–211. doi: 10.1165/rcmb.2003-0259OC. [DOI] [PubMed] [Google Scholar]
  29. Saetta M., Di Stefano A., Maestrelli P., De Marzo N., Milani G. F., Pivirotto F., Mapp C. E., Fabbri L. M. Airway mucosal inflammation in occupational asthma induced by toluene diisocyanate. Am Rev Respir Dis. 1992 Jan;145(1):160–168. doi: 10.1164/ajrccm/145.1.160. [DOI] [PubMed] [Google Scholar]
  30. Saetta M., Maestrelli P., Di Stefano A., De Marzo N., Milani G. F., Pivirotto F., Mapp C. E., Fabbri L. M. Effect of cessation of exposure to toluene diisocyanate (TDI) on bronchial mucosa of subjects with TDI-induced asthma. Am Rev Respir Dis. 1992 Jan;145(1):169–174. doi: 10.1164/ajrccm/145.1.169. [DOI] [PubMed] [Google Scholar]
  31. Sarić M., Zuskin E., Gomzi M. Bronchoconstriction in potroom workers. Br J Ind Med. 1979 Aug;36(3):211–215. doi: 10.1136/oem.36.3.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sorgdrager B., Pal T. M., de Looff A. J., Dubois A. E., de Monchy J. G. Occupational asthma in aluminium potroom workers related to pre-employment eosinophil count. Eur Respir J. 1995 Sep;8(9):1520–1524. [PubMed] [Google Scholar]
  33. Steinegger A. F., Schlatter C. Evaluation of fluoride exposure in aluminium smelters: state of the art. Med Lav. 1992 Sep-Oct;83(5):489–498. [PubMed] [Google Scholar]
  34. Sullivan P., Stephens D., Ansari T., Costello J., Jeffery P. Variation in the measurements of basement membrane thickness and inflammatory cell number in bronchial biopsies. Eur Respir J. 1998 Oct;12(4):811–815. doi: 10.1183/09031936.98.12040811. [DOI] [PubMed] [Google Scholar]
  35. Sunyer J., Springer G., Jamieson B., Conover C., Detels R., Rinaldo C., Margolick J., Muñoz A. Effects of asthma on cell components in peripheral blood among smokers and non-smokers. Clin Exp Allergy. 2003 Nov;33(11):1500–1505. doi: 10.1046/j.1365-2222.2003.01730.x. [DOI] [PubMed] [Google Scholar]
  36. Søyseth V., Kongerud J., Aalen O. O., Botten G., Boe J. Bronchial responsiveness decreases in relocated aluminum potroom workers compared with workers who continue their potroom exposure. Int Arch Occup Environ Health. 1995;67(1):53–57. doi: 10.1007/BF00383133. [DOI] [PubMed] [Google Scholar]
  37. Søyseth V., Kongerud J., Ekstrand J., Boe J. Relation between exposure to fluoride and bronchial responsiveness in aluminium potroom workers with work-related asthma-like symptoms. Thorax. 1994 Oct;49(10):984–989. doi: 10.1136/thx.49.10.984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Søyseth V., Kongerud J. Prevalence of respiratory disorders among aluminium potroom workers in relation to exposure to fluoride. Br J Ind Med. 1992 Feb;49(2):125–130. doi: 10.1136/oem.49.2.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wang Hong, Yu Man, Ochani Mahendar, Amella Carol Ann, Tanovic Mahira, Susarla Seenu, Li Jian Hua, Wang Haichao, Yang Huan, Ulloa Luis. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2002 Dec 22;421(6921):384–388. doi: 10.1038/nature01339. [DOI] [PubMed] [Google Scholar]
  40. Wenzel S. E., Schwartz L. B., Langmack E. L., Halliday J. L., Trudeau J. B., Gibbs R. L., Chu H. W. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med. 1999 Sep;160(3):1001–1008. doi: 10.1164/ajrccm.160.3.9812110. [DOI] [PubMed] [Google Scholar]
  41. Wilson J. W., Li X. The measurement of reticular basement membrane and submucosal collagen in the asthmatic airway. Clin Exp Allergy. 1997 Apr;27(4):363–371. [PubMed] [Google Scholar]
  42. van den Toorn L. M., Overbeek S. E., de Jongste J. C., Leman K., Hoogsteden H. C., Prins J. B. Airway inflammation is present during clinical remission of atopic asthma. Am J Respir Crit Care Med. 2001 Dec 1;164(11):2107–2113. doi: 10.1164/ajrccm.164.11.2006165. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

[Additional Author Information]

Articles from Occupational and Environmental Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES