Abstract
Background: In patients with cystic fibrosis (CF) neutrophils are recruited in excess to the airways yet pathogens are not cleared and the patients suffer from chronic infections. Recent studies have shown a deficiency in airway fluids from patients with CF and other inflammatory pulmonary conditions of surfactant protein A (SP-A), a pattern recognition molecule that facilitates uptake of microbes by macrophages and neutrophils.
Methods: In vitro simulations were used to test the hypothesis that decreased SP-A levels in CF might be the result of degradation by neutrophil serine proteases.
Results: Very low levels of the neutrophil granule serine proteases cathepsin G, elastase, and proteinase-3 rapidly degraded pure SP-A when tested in buffered saline. The order of potency was cathepsin G>elastase>proteinase-3. The addition of cathepsin G or elastase to normal bronchoalveolar lavage (BAL) fluid caused a dose dependent degradation of endogenous native SP-A. Cathepsin G and elastase were present in the BAL fluid from many patients with CF. Simple incubation of protease positive BAL fluid from patients with CF caused a time dependent degradation of added SP-A or, where present, endogenous SP-A. The degradation of SP-A by protease(s) in BAL fluid of patients with CF was abrogated by diisopropylfluorophosphate and monocyte/neutrophil elastase inhibitor.
Conclusions: The findings strongly suggest that the neutrophil serine proteases cathepsin G and/or elastase and/or proteinase-3 contribute to degradation of SP-A and thereby diminish innate pulmonary antimicrobial defence.
Full Text
The Full Text of this article is available as a PDF (336.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baughman R. P., Sternberg R. I., Hull W., Buchsbaum J. A., Whitsett J. Decreased surfactant protein A in patients with bacterial pneumonia. Am Rev Respir Dis. 1993 Mar;147(3):653–657. doi: 10.1164/ajrccm/147.3.653. [DOI] [PubMed] [Google Scholar]
- Birrer P., McElvaney N. G., Rüdeberg A., Sommer C. W., Liechti-Gallati S., Kraemer R., Hubbard R., Crystal R. G. Protease-antiprotease imbalance in the lungs of children with cystic fibrosis. Am J Respir Crit Care Med. 1994 Jul;150(1):207–213. doi: 10.1164/ajrccm.150.1.7912987. [DOI] [PubMed] [Google Scholar]
- Campbell E. J., Campbell M. A., Boukedes S. S., Owen C. A. Quantum proteolysis by neutrophils: implications for pulmonary emphysema in alpha 1-antitrypsin deficiency. J Clin Invest. 1999 Aug;104(3):337–344. doi: 10.1172/JCI6092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell E. J., Silverman E. K., Campbell M. A. Elastase and cathepsin G of human monocytes. Quantification of cellular content, release in response to stimuli, and heterogeneity in elastase-mediated proteolytic activity. J Immunol. 1989 Nov 1;143(9):2961–2968. [PubMed] [Google Scholar]
- Cantin A. Cystic fibrosis lung inflammation: early, sustained, and severe. Am J Respir Crit Care Med. 1995 Apr;151(4):939–941. doi: 10.1164/ajrccm.151.4.7697269. [DOI] [PubMed] [Google Scholar]
- Chiba H., Sano H., Saitoh M., Sohma H., Voelker D. R., Akino T., Kuroki Y. Introduction of mannose binding protein-type phosphatidylinositol recognition into pulmonary surfactant protein A. Biochemistry. 1999 Jun 1;38(22):7321–7331. doi: 10.1021/bi990353e. [DOI] [PubMed] [Google Scholar]
- Cooley J., Takayama T. K., Shapiro S. D., Schechter N. M., Remold-O'Donnell E. The serpin MNEI inhibits elastase-like and chymotrypsin-like serine proteases through efficient reactions at two active sites. Biochemistry. 2001 Dec 25;40(51):15762–15770. doi: 10.1021/bi0113925. [DOI] [PubMed] [Google Scholar]
- Doyle I. R., Jones M. E., Barr H. A., Orgeig S., Crockett A. J., McDonald C. F., Nicholas T. E. Composition of human pulmonary surfactant varies with exercise and level of fitness. Am J Respir Crit Care Med. 1994 Jun;149(6):1619–1627. doi: 10.1164/ajrccm.149.6.8004321. [DOI] [PubMed] [Google Scholar]
- Duranton J., Belorgey D., Carrère J., Donato L., Moritz T., Bieth J. G. Effect of DNase on the activity of neutrophil elastase, cathepsin G and proteinase 3 in the presence of DNA. FEBS Lett. 2000 May 12;473(2):154–156. doi: 10.1016/s0014-5793(00)01512-x. [DOI] [PubMed] [Google Scholar]
- Griese M., Birrer P., Demirsoy A. Pulmonary surfactant in cystic fibrosis. Eur Respir J. 1997 Sep;10(9):1983–1988. doi: 10.1183/09031936.97.10091983. [DOI] [PubMed] [Google Scholar]
- Griese M., von Bredow C., Birrer P. Reduced proteolysis of surfactant protein A and changes of the bronchoalveolar lavage fluid proteome by inhaled alpha 1-protease inhibitor in cystic fibrosis. Electrophoresis. 2001 Jan;22(1):165–171. doi: 10.1002/1522-2683(200101)22:1<165::AID-ELPS165>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
- Hiraike N., Sohma H., Kuroki Y., Akino T. Epitope mapping for monoclonal antibody against human surfactant protein A (SP-A) that alters receptor binding of SP-A and the SP-A-dependent regulation of phospholipid secretion by alveolar type II cells. Biochim Biophys Acta. 1995 Aug 3;1257(3):214–222. doi: 10.1016/0005-2760(95)00068-n. [DOI] [PubMed] [Google Scholar]
- Khan T. Z., Wagener J. S., Bost T., Martinez J., Accurso F. J., Riches D. W. Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med. 1995 Apr;151(4):1075–1082. doi: 10.1164/ajrccm/151.4.1075. [DOI] [PubMed] [Google Scholar]
- Konstan M. W., Hilliard K. A., Norvell T. M., Berger M. Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung disease suggest ongoing infection and inflammation. Am J Respir Crit Care Med. 1994 Aug;150(2):448–454. doi: 10.1164/ajrccm.150.2.8049828. [DOI] [PubMed] [Google Scholar]
- Korfhagen T. R. Surfactant protein A (SP-A)-mediated bacterial clearance: SP-A and cystic fibrosis. Am J Respir Cell Mol Biol. 2001 Dec;25(6):668–672. doi: 10.1165/ajrcmb.25.6.f221. [DOI] [PubMed] [Google Scholar]
- Kuroki Y., Fukada Y., Takahashi H., Akino T. Monoclonal antibodies against human pulmonary surfactant apoproteins: specificity and application in immunoassay. Biochim Biophys Acta. 1985 Sep 11;836(2):201–209. [PubMed] [Google Scholar]
- LeVine A. M., Lotze A., Stanley S., Stroud C., O'Donnell R., Whitsett J., Pollack M. M. Surfactant content in children with inflammatory lung disease. Crit Care Med. 1996 Jun;24(6):1062–1067. doi: 10.1097/00003246-199606000-00029. [DOI] [PubMed] [Google Scholar]
- LeVine A. M., Whitsett J. A. Pulmonary collectins and innate host defense of the lung. Microbes Infect. 2001 Feb;3(2):161–166. doi: 10.1016/s1286-4579(00)01363-0. [DOI] [PubMed] [Google Scholar]
- Mariencheck William I., Alcorn John F., Palmer Scott M., Wright Jo Rae. Pseudomonas aeruginosa elastase degrades surfactant proteins A and D. Am J Respir Cell Mol Biol. 2003 Apr;28(4):528–537. doi: 10.1165/rcmb.2002-0141OC. [DOI] [PubMed] [Google Scholar]
- McCormack F. X., King T. E., Jr, Bucher B. L., Nielsen L., Mason R. J., McCormac F. X. Surfactant protein A predicts survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 1995 Aug;152(2):751–759. doi: 10.1164/ajrccm.152.2.7633738. [DOI] [PubMed] [Google Scholar]
- McCormack Francis X., Whitsett Jeffrey A. The pulmonary collectins, SP-A and SP-D, orchestrate innate immunity in the lung. J Clin Invest. 2002 Mar;109(6):707–712. doi: 10.1172/JCI15293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McElvaney N. G., Hubbard R. C., Birrer P., Chernick M. S., Caplan D. B., Frank M. M., Crystal R. G. Aerosol alpha 1-antitrypsin treatment for cystic fibrosis. Lancet. 1991 Feb 16;337(8738):392–394. doi: 10.1016/0140-6736(91)91167-s. [DOI] [PubMed] [Google Scholar]
- Nakajima K., Powers J. C., Ashe B. M., Zimmerman M. Mapping the extended substrate binding site of cathepsin G and human leukocyte elastase. Studies with peptide substrates related to the alpha 1-protease inhibitor reactive site. J Biol Chem. 1979 May 25;254(10):4027–4032. [PubMed] [Google Scholar]
- Noah Terry L., Murphy Paula C., Alink Jorien J., Leigh Margaret W., Hull William M., Stahlman Mildred T., Whitsett Jeffrey A. Bronchoalveolar lavage fluid surfactant protein-A and surfactant protein-D are inversely related to inflammation in early cystic fibrosis. Am J Respir Crit Care Med. 2003 Jun 26;168(6):685–691. doi: 10.1164/rccm.200301-005OC. [DOI] [PubMed] [Google Scholar]
- Owen C. A., Campbell M. A., Boukedes S. S., Campbell E. J. Inducible binding of bioactive cathepsin G to the cell surface of neutrophils. A novel mechanism for mediating extracellular catalytic activity of cathepsin G. J Immunol. 1995 Dec 15;155(12):5803–5810. [PubMed] [Google Scholar]
- Pison U., Tam E. K., Caughey G. H., Hawgood S. Proteolytic inactivation of dog lung surfactant-associated proteins by neutrophil elastase. Biochim Biophys Acta. 1989 Sep 15;992(3):251–257. doi: 10.1016/0304-4165(89)90082-2. [DOI] [PubMed] [Google Scholar]
- Postle A. D., Mander A., Reid K. B., Wang J. Y., Wright S. M., Moustaki M., Warner J. O. Deficient hydrophilic lung surfactant proteins A and D with normal surfactant phospholipid molecular species in cystic fibrosis. Am J Respir Cell Mol Biol. 1999 Jan;20(1):90–98. doi: 10.1165/ajrcmb.20.1.3253. [DOI] [PubMed] [Google Scholar]
- Ryan S. F., Ghassibi Y., Liau D. F. Effects of activated polymorphonuclear leukocytes upon pulmonary surfactant in vitro. Am J Respir Cell Mol Biol. 1991 Jan;4(1):33–41. doi: 10.1165/ajrcmb/4.1.33. [DOI] [PubMed] [Google Scholar]
- Sastry K., Ezekowitz R. A. Collectins: pattern recognition molecules involved in first line host defense. Curr Opin Immunol. 1993 Feb;5(1):59–66. doi: 10.1016/0952-7915(93)90082-4. [DOI] [PubMed] [Google Scholar]
- Schochett P., Mora R., Mark L., Butler M., Ingenito E. P. Calcium-dependent degradation of surfactant protein A by activated neutrophils due to serine proteases. Exp Lung Res. 1999 Oct-Nov;25(7):595–616. doi: 10.1080/019021499270042. [DOI] [PubMed] [Google Scholar]
- Schuster A., Fahy J. V., Ueki I., Nadel J. A. Cystic fibrosis sputum induces a secretory response from airway gland serous cells that can be prevented by neutrophil protease inhibitors. Eur Respir J. 1995 Jan;8(1):10–14. doi: 10.1183/09031936.95.08010010. [DOI] [PubMed] [Google Scholar]
- Witko-Sarsat V., Halbwachs-Mecarelli L., Schuster A., Nusbaum P., Ueki I., Canteloup S., Lenoir G., Descamps-Latscha B., Nadel J. A. Proteinase 3, a potent secretagogue in airways, is present in cystic fibrosis sputum. Am J Respir Cell Mol Biol. 1999 Apr;20(4):729–736. doi: 10.1165/ajrcmb.20.4.3371. [DOI] [PubMed] [Google Scholar]
- Wright J. R. Immunomodulatory functions of surfactant. Physiol Rev. 1997 Oct;77(4):931–962. doi: 10.1152/physrev.1997.77.4.931. [DOI] [PubMed] [Google Scholar]
- von Bredow C., Birrer P., Griese M. Surfactant protein A and other bronchoalveolar lavage fluid proteins are altered in cystic fibrosis. Eur Respir J. 2001 Apr;17(4):716–722. doi: 10.1183/09031936.01.17407160. [DOI] [PubMed] [Google Scholar]