Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1986 Feb;29(2):258–262. doi: 10.1128/aac.29.2.258

Characteristics of ethidium uptake by the trypanosomatid flagellates Crithidia fasciculata and Leptomonas seymouri.

K P Coolbear, M Midgley
PMCID: PMC176387  PMID: 2940964

Abstract

The uptake of the phenanthridinium ethidium by the trypanosomatids Crithidia fasciculata and Leptomonas seymouri was studied. The time course of uptake of ethidium was biphasic for both organisms, consisting of an initial rapid phase and a protracted slow phase. The characteristics of these phases were consistent with the hypothesis that the initial phase represented specific external binding, while the second phase represented transport into the cells. In L. seymouri the transport phase was inhibited by inhibitors of energy transduction and putative inhibitors of a transport ATPase. Ethidium transport could not be saturated over a large concentration range of ethidium. Phenanthridiniums and related compounds displayed both inhibitory and stimulatory effects on ethidium transport.

Full text

PDF
258

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azzi A., Santato M. Interaction of ethidium with the mitochondrial membrane: cooperative binding and energy-linked changes. Biochem Biophys Res Commun. 1971 Jul 2;44(1):211–217. doi: 10.1016/s0006-291x(71)80180-8. [DOI] [PubMed] [Google Scholar]
  2. BONE G. J., STEINERT M. Isotopes incorporated in the nucleic acids of Trypanosoma mega. Nature. 1956 Aug 11;178(4528):308–309. doi: 10.1038/178308a0. [DOI] [PubMed] [Google Scholar]
  3. Bacchi C. J., Lambros C., Ellenbogen B. B., Penkovsky L. N., Sullivan W., Eyinna E. E., Hutner S. H. Drug-resistant Leptomonas: cross-resistance in trypanocide-resistant clones. Antimicrob Agents Chemother. 1975 Dec;8(6):688–692. doi: 10.1128/aac.8.6.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bacchi J., Lambros C., Goldberg B., Hutner S. H., de Carvalho G. D. Susceptibility of an insect Leptomonas and Crithidia fasciculata to several established antitrypanosomatid agents. Antimicrob Agents Chemother. 1974 Dec;6(6):785–790. doi: 10.1128/aac.6.6.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borst-Pauwels G. W. Ion transport in yeast. Biochim Biophys Acta. 1981 Dec;650(2-3):88–127. doi: 10.1016/0304-4157(81)90002-2. [DOI] [PubMed] [Google Scholar]
  6. Borst P. Mitochondrial nucleic acids. Annu Rev Biochem. 1972;41:333–376. doi: 10.1146/annurev.bi.41.070172.002001. [DOI] [PubMed] [Google Scholar]
  7. Brunner A., Carrasco N., Peña A. Correlation between resistance to ethidium bromide and changes in monovalent cation uptake in yeast. Arch Biochem Biophys. 1982 Aug;217(1):30–36. doi: 10.1016/0003-9861(82)90475-1. [DOI] [PubMed] [Google Scholar]
  8. Eilam Y. Effects of phenothiazines on inhibition of plasma membrane ATPase and hyperpolarization of cell membranes in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta. 1984 Feb 15;769(3):601–610. doi: 10.1016/0005-2736(84)90059-2. [DOI] [PubMed] [Google Scholar]
  9. Goldberg B., Lambros C., Bacchi C. J., Hutner S. H. Inhibition by several standard antiprotozoal drugs of growth and O2 uptake of cells and particulate preparations of a Leptomonas. J Protozool. 1974 May;21(2):322–326. doi: 10.1111/j.1550-7408.1974.tb03662.x. [DOI] [PubMed] [Google Scholar]
  10. Grimwood B. G., Wagner R. P. Direct action of ethidium bromide upon mitochondrial oxidative phosphorylation and morphology. Arch Biochem Biophys. 1976 Sep;176(1):43–52. doi: 10.1016/0003-9861(76)90139-9. [DOI] [PubMed] [Google Scholar]
  11. Gutteridge W. E. Some effects of pentamidine di-isethionate on Crithidia fasciculata. J Protozool. 1969 May;16(2):306–311. doi: 10.1111/j.1550-7408.1969.tb02275.x. [DOI] [PubMed] [Google Scholar]
  12. Higuti T., Yokota M., Arakaki N., Hattori A., Tani I. Sidedness of inhibition of energy transduction in oxidative phosphorylation in rat liver mitochondria by ethidium bromide. Biochim Biophys Acta. 1978 Aug 8;503(2):211–222. doi: 10.1016/0005-2728(78)90183-4. [DOI] [PubMed] [Google Scholar]
  13. Lambert B., Le Pecq J. B. Effect of mutation, electric membrane potential, and metabolic inhibitors on the accessibility of nucleic acids to ethidium bromide in Escherichia coli cells. Biochemistry. 1984 Jan 3;23(1):166–176. doi: 10.1021/bi00296a027. [DOI] [PubMed] [Google Scholar]
  14. Mahler H. R. Structural requirements for mitochondrial mutagenesis. J Supramol Struct. 1973;1(6):449–460. doi: 10.1002/jss.400010602. [DOI] [PubMed] [Google Scholar]
  15. Midgley M., Stephenson M. C. Measurement of the membrane potential component of the transmembrane proton electrochemical gradient in Crithidia fasciculata [proceedings]. Biochem Soc Trans. 1980 Jun;8(3):307–308. doi: 10.1042/bst0080307. [DOI] [PubMed] [Google Scholar]
  16. Midgley M. The transport of alpha-aminoisobutyrate into Crithidia fasciculata. Biochem J. 1978 Jul 15;174(1):191–202. doi: 10.1042/bj1740191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Min H. S. Studies on the transport of carbohydrate in Crithidia luciliae. J Cell Physiol. 1965 Apr;65(2):243–248. doi: 10.1002/jcp.1030650211. [DOI] [PubMed] [Google Scholar]
  18. Pena A., Ramirez G. Interaction of ethidium bromide with the transport system for monovalent cations in yeast. J Membr Biol. 1975 Jul 24;22(3-4):369–384. doi: 10.1007/BF01868181. [DOI] [PubMed] [Google Scholar]
  19. Peña A., Chávez E., Cárabez A., De Gómez-Puyou M. T. The metabolic effects and uptake of ethidium bromide by rat liver mitochondria. Arch Biochem Biophys. 1977 Apr 30;180(2):522–529. doi: 10.1016/0003-9861(77)90068-6. [DOI] [PubMed] [Google Scholar]
  20. Peña A., Clemente S. M., Borbolla M., Carrasco N., Uribe S. Multiple interactions of ethidium bromide with yeast cells. Arch Biochem Biophys. 1980 May;201(2):420–428. doi: 10.1016/0003-9861(80)90530-5. [DOI] [PubMed] [Google Scholar]
  21. Philips F. S., Sternberg S. S., Cronin A. P., Sodergren J. E., Vidal P. M. Physiologic disposition and intracellular localization of isometamidium. Cancer Res. 1967 Feb;27(2):333–349. [PubMed] [Google Scholar]
  22. Steinert M. Specific loss of kinetoplastic DNA in trypanosomatidae treated with ethidium bromide. Exp Cell Res. 1969 May;55(2):248–252. doi: 10.1016/0014-4827(69)90487-x. [DOI] [PubMed] [Google Scholar]
  23. Theuvenet A. P., Bindels R. J., van Amelsvoort J. M., Borst-Pauwels G. W., Stols A. L. Interaction of ethidium bromide with yeast cells investigated by electron probe X-ray microanalysis. J Membr Biol. 1983;73(2):131–136. doi: 10.1007/BF01870436. [DOI] [PubMed] [Google Scholar]
  24. Wakelin L. P., Waring M. J. The unwinding of circular deoxyribonucleic acid by phenanthridinium drugs: structure-activity relations for the intercalation reaction. Mol Pharmacol. 1974 May;10(3):544–561. [PubMed] [Google Scholar]
  25. Williams W. P., Layton D. G., Johnston C. An analysis of the binding of fluorescence probes in mitochondrial systems. J Membr Biol. 1977 May 6;33(1-2):21–40. doi: 10.1007/BF01869510. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES