Abstract
The in vitro effects of RU 28965 (roxithromycin), a new semisynthetic macrolide, on human neutrophil activity were compared with those of erythromycin. RU 28965, at a concentration as low as 0.1 microgram/ml, significantly enhanced the phagocytosis and killing of Staphylococcus aureus by neutrophils. Erythromycin displayed a less stimulating effect in a dose-dependent manner. Phagocytosis of Klebsiella pneumoniae was also increased after incubation of neutrophils with RU 28965, but killing was not altered. Neutrophil chemotaxis, myeloperoxidase activity, and O2 consumption were unchanged in the presence of RU 28965.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R., Fernandes A. C., Eftychis H. E. Studies on the effects of ingestion of a single 500 mg oral dose of erythromycin stearate on leucocyte motility and transformation and on release in vitro of prostaglandin E2 by stimulated leucocytes. J Antimicrob Chemother. 1984 Jul;14(1):41–50. doi: 10.1093/jac/14.1.41. [DOI] [PubMed] [Google Scholar]
- Anderson R., Van Rensburg C. E., Eftychis H., Jooné G., van Rensburg A. J. Further studies on erythromycin effects on cellular immune functions in vitro and in vivo. Enhancement of neutrophil motility by erythromycin combined with ascorbate or thiamine. J Antimicrob Chemother. 1982 Nov;10(5):409–417. doi: 10.1093/jac/10.5.409. [DOI] [PubMed] [Google Scholar]
- Barlam T., Neu H. C. In vitro comparison of the activity of RU 28965, a new macrolide, with that of erythromycin against aerobic and anaerobic bacteria. Antimicrob Agents Chemother. 1984 Apr;25(4):529–531. doi: 10.1128/aac.25.4.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beaman L., Beaman B. L. The role of oxygen and its derivatives in microbial pathogenesis and host defense. Annu Rev Microbiol. 1984;38:27–48. doi: 10.1146/annurev.mi.38.100184.000331. [DOI] [PubMed] [Google Scholar]
- Biddle J. W., Thornsberry C. In vitro activity of rosamicin, josamycin, erythromycin, and clindamycin against beta-lactamase-nagative and beta-lactamase-positive strains of Neisseria gonorrhoeae. Antimicrob Agents Chemother. 1979 Feb;15(2):243–245. doi: 10.1128/aac.15.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bridges C. G., Dasilva G. L., Yamamura M., Valdimarsson H. A radiometric assay for the combined measurement of phagocytosis and intracellular killing of Candida albicans. Clin Exp Immunol. 1980 Nov;42(2):226–233. [PMC free article] [PubMed] [Google Scholar]
- Daschner F. D. Antibiotics and host defence with special reference to phagocytosis by human polymorphonuclear leukocytes. J Antimicrob Chemother. 1985 Aug;16(2):135–141. doi: 10.1093/jac/16.2.135. [DOI] [PubMed] [Google Scholar]
- Esterly N. B., Furey N. L., Flanagan L. E. The effect of antimicrobial agents on leukocyte chemotaxis. J Invest Dermatol. 1978 Jan;70(1):51–55. doi: 10.1111/1523-1747.ep12543487. [DOI] [PubMed] [Google Scholar]
- Faden H., Hong J. J., Ogra P. L. In-vivo effects of clindamycin on neutrophil function--a preliminary report. J Antimicrob Chemother. 1983 Oct;12 (Suppl 100):29–34. doi: 10.1093/jac/12.suppl_c.29. [DOI] [PubMed] [Google Scholar]
- Faure M., Thivolet J., Gaucherand M. Inhibition of PMN leukocytes chemotaxis by thalidomide. Arch Dermatol Res. 1980;269(3):275–280. doi: 10.1007/BF00406421. [DOI] [PubMed] [Google Scholar]
- Forsgren A., Schmeling D. Effect of antibiotics of chemotaxis of human leukocytes. Antimicrob Agents Chemother. 1977 Apr;11(4):580–584. doi: 10.1128/aac.11.4.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gemmell C. G. Potentiation of phagocytosis of pathogenic bacteria by exposure to low concentrations of antibiotics. J Antimicrob Chemother. 1984 May;13(5):407–409. doi: 10.1093/jac/13.5.407. [DOI] [PubMed] [Google Scholar]
- Hakim J., Cramer E., Boivin P., Troube H., Boucherot J. Quantitative iodination of human blood polymorphonuclear leukocytes. Eur J Clin Invest. 1975 Jun 12;5(3):215–219. doi: 10.1111/j.1365-2362.1975.tb00447.x. [DOI] [PubMed] [Google Scholar]
- Hand W. L., King-Thompson N. L., Johnson J. D. Influence of bacterial-antibiotic interactions on subsequent antimicrobial activity of alveolar macrophages. J Infect Dis. 1984 Feb;149(2):271–276. doi: 10.1093/infdis/149.2.271. [DOI] [PubMed] [Google Scholar]
- Hand W. L., King-Thompson N. L., Steinberg T. H. Interactions of antibiotics and phagocytes. J Antimicrob Chemother. 1983 Oct;12 (Suppl 100):1–11. doi: 10.1093/jac/12.suppl_c.1. [DOI] [PubMed] [Google Scholar]
- Jones R. N., Barry A. L., Thornsberry C. In vitro evaluation of three new macrolide antimicrobial agents, RU28965, RU29065, and RU29702, and comparisons with other orally administered drugs. Antimicrob Agents Chemother. 1983 Aug;24(2):209–215. doi: 10.1128/aac.24.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klebanoff S. J. Antimicrobial mechanisms in neutrophilic polymorphonuclear leukocytes. Semin Hematol. 1975 Apr;12(2):117–142. [PubMed] [Google Scholar]
- Kvarstein B. Oxygen consumption during the initial stage of human leucocyte phagocytosis of polystyrene latex particles. Scand J Clin Lab Invest. 1970 Jun;25(4):337–348. doi: 10.3109/00365517009046214. [DOI] [PubMed] [Google Scholar]
- Leijh P. C., van den Barselaar M. T., van Furth R. Kinetics of phagocytosis and intracellular killing of Staphylococcus aureus and Escherichia coli by human monocytes. Scand J Immunol. 1981;13(2):159–174. doi: 10.1111/j.1365-3083.1981.tb00122.x. [DOI] [PubMed] [Google Scholar]
- Leyhausen G., Seibert G., Maidhof A., Müller W. E. Differential stimulation of lymphocyte cell growth in vitro by cephalosporins. Antimicrob Agents Chemother. 1984 Nov;26(5):752–756. doi: 10.1128/aac.26.5.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lorian V. Antibiotiques à concentrations subinhibitrices. Effet sur la morphologie et la croissance. Pathol Biol (Paris) 1977 May;25(5):291–298. [PubMed] [Google Scholar]
- Mandell L. A. Effects of antimicrobial and antineoplastic drugs on the phagocytic and microbicidal function of the polymorphonuclear leukocyte. Rev Infect Dis. 1982 May-Jun;4(3):683–697. doi: 10.1093/clinids/4.3.683. [DOI] [PubMed] [Google Scholar]
- Martin J. R., Johnson P., Miller M. F. Uptake, accumulation, and egress of erythromycin by tissue culture cells of human origin. Antimicrob Agents Chemother. 1985 Mar;27(3):314–319. doi: 10.1128/aac.27.3.314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller M. F., Martin J. R., Johnson P., Ulrich J. T., Rdzok E. J., Billing P. Erythromycin uptake and accumulation by human polymorphonuclear leukocytes and efficacy of erythromycin in killing ingested Legionella pneumophila. J Infect Dis. 1984 May;149(5):714–718. doi: 10.1093/infdis/149.5.714. [DOI] [PubMed] [Google Scholar]
- Nelson R. D., Quie P. G., Simmons R. L. Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J Immunol. 1975 Dec;115(6):1650–1656. [PubMed] [Google Scholar]
- Perianin A., Labro M. T., Hakim J. Chemokinetic activity of N-formyl-methionyl-leucyl-phenylalanine on human neutrophils, and its modulation by phenylbutazone. Biochem Pharmacol. 1982 Oct 1;31(19):3071–3076. doi: 10.1016/0006-2952(82)90082-x. [DOI] [PubMed] [Google Scholar]
- Pincus S. H., Klebanoff S. J. Quantitative leukocyte iodination. N Engl J Med. 1971 Apr 8;284(14):744–750. doi: 10.1056/NEJM197104082841402. [DOI] [PubMed] [Google Scholar]
- Smith D. L., Rommel F. A rapid micro method for the simultaneous determination of phagocytic-microbiocidal activity of human peripheral blood leukocytes in vitro. J Immunol Methods. 1977;17(3-4):241–247. doi: 10.1016/0022-1759(77)90106-5. [DOI] [PubMed] [Google Scholar]
- Stavem P., Dahl O. Differences in phagocytic/adherence properties between normal neutrophils. Scand J Haematol. 1984 Aug;33(2):212–214. doi: 10.1111/j.1600-0609.1984.tb02398.x. [DOI] [PubMed] [Google Scholar]
- Torres M., De Prost D., Hakim J., Gougerot M. A. Metabolic activity of human polymorphonuclear leucocytes: relation to ingestion rate. Eur J Clin Invest. 1979 Jun;9(3):209–217. doi: 10.1111/j.1365-2362.1979.tb00925.x. [DOI] [PubMed] [Google Scholar]
- Tremblay D., Bryskier A., Vuckovic M., Stockis A., Manuel C. RU 28965, nouveau macrolide semi-synthéthique. Biodisponibilité et profil pharmacocinétique après administration par voie orale. Pathol Biol (Paris) 1985 Jun;33(5 Pt 2):502–506. [PubMed] [Google Scholar]
- Weiss J., Elsbach P., Olsson I., Odeberg H. Purification and characterization of a potent bactericidal and membrane active protein from the granules of human polymorphonuclear leukocytes. J Biol Chem. 1978 Apr 25;253(8):2664–2672. [PubMed] [Google Scholar]
- Weiss J., Victor M., Stendhal O., Elsbach P. Killing of gram-negative bacteria by polymorphonuclear leukocytes: role of an O2-independent bactericidal system. J Clin Invest. 1982 Apr;69(4):959–970. doi: 10.1172/JCI110535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Westerman E. L., Williams T. W., Jr, Moreland N. In vitro activity of josamycin against aerobic gram-positive cocci and anaerobes. Antimicrob Agents Chemother. 1976 Jun;9(6):988–993. doi: 10.1128/aac.9.6.988. [DOI] [PMC free article] [PubMed] [Google Scholar]
