Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1986 Jul;30(1):147–151. doi: 10.1128/aac.30.1.147

Inhibition of electron transfer and uncoupling effects by emodin and emodinanthrone in Escherichia coli.

T Ubbink-Kok, J A Anderson, W N Konings
PMCID: PMC176453  PMID: 3019234

Abstract

The anthraquinones emodin (1,3,delta-trihydroxy-6-methylanthraquinone) and emodinanthrone (1,3,8-trihydroxy-6-methylanthrone) inhibited respiration-driven solute transport at micromolar concentrations in membrane vesicles of Escherichia coli. This inhibition was enhanced by Ca ions. The inhibitory action on solute transport is caused by inhibition of electron flow in the respiratory chain, most likely at the level between ubiquinone and cytochrome b, and by dissipation of the proton motive force. The uncoupling action was confirmed by studies on the proton motive force in beef heart cytochrome oxidase proteoliposomes. These two effects on energy transduction in cytoplasmic membranes explain the antibiotic properties of emodin and emodinanthrone.

Full text

PDF
147

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anke H., Kolthoum I., Laatsch H. Metabolic products of microorganisms. 192. The anthraquinones of the Aspergillus glaucus group. II. Biological activity. Arch Microbiol. 1980 Jul;126(3):231–236. doi: 10.1007/BF00409925. [DOI] [PubMed] [Google Scholar]
  2. Anke H., Kolthoum I., Zähner H., Laatsch H. Metabolic products of microorganisms. 185. The anthraquinones of the Aspergillus glaucus group. I. Occurrence, isolation, identification and antimicrobial activity. Arch Microbiol. 1980 Jul;126(3):223–230. doi: 10.1007/BF00409924. [DOI] [PubMed] [Google Scholar]
  3. Boonstra J., Sips H. J., Konings W. N. Active transport by membrane vesicles from anaerobically grown Escherichia coli energized by electron transfer to ferricyanide and chlorate. Eur J Biochem. 1976 Oct 1;69(1):35–44. doi: 10.1111/j.1432-1033.1976.tb10855.x. [DOI] [PubMed] [Google Scholar]
  4. Brown J. P., Brown R. J. Mutagenesis by 9,10-anthraquinone derivatives and related compounds in Salmonella typhimurium. Mutat Res. 1976 Jul;40(3):203–224. doi: 10.1016/0165-1218(76)90046-x. [DOI] [PubMed] [Google Scholar]
  5. Buckelew A. R., Jr, Chakravarti A., Burge W. R., Thomas V. M., Jr, Ikawa M. Effect of mycotoxins and coumarins on the growth of Bacillus megaterium from spores. J Agric Food Chem. 1972 Mar-Apr;20(2):431–434. doi: 10.1021/jf60180a056. [DOI] [PubMed] [Google Scholar]
  6. Clement N. R., Gould J. M. Pyranine (8-hydroxy-1,3,6-pyrenetrisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles. Biochemistry. 1981 Mar 17;20(6):1534–1538. doi: 10.1021/bi00509a019. [DOI] [PubMed] [Google Scholar]
  7. Convent B., Briquet M. Properties of 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea and other inhibitors of the cytochrome bc1 segment of the mitochondrial respiratory chain in Saccharomyces cerevisiae. Eur J Biochem. 1978 Jan 16;82(2):473–481. doi: 10.1111/j.1432-1033.1978.tb12041.x. [DOI] [PubMed] [Google Scholar]
  8. Fuzellier M. C., Mortier F., Girard T., Payen J. Etude des propriétés antibiotiques de quelques anthraquinones à l'aide de microplaques de chromatographie. Ann Pharm Fr. 1981;39(4):313–318. [PubMed] [Google Scholar]
  9. Hinkle P. C., Kim J. J., Racker E. Ion transport and respiratory control in vesicles formed from cytochrome oxidase and phospholipids. J Biol Chem. 1972 Feb 25;247(4):1338–1339. [PubMed] [Google Scholar]
  10. Ingledew W. J., Poole R. K. The respiratory chains of Escherichia coli. Microbiol Rev. 1984 Sep;48(3):222–271. doi: 10.1128/mr.48.3.222-271.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kaback H. R., Barnes E. M., Jr Mechanisms of active transport in isolated membrane vesicles. II. The mechanism of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in membrane preparations from Escherichia coli. J Biol Chem. 1971 Sep 10;246(17):5523–5531. [PubMed] [Google Scholar]
  12. Kaback H. R. Molecular biology and energetics of membrane transport. J Cell Physiol. 1976 Dec;89(4):575–593. doi: 10.1002/jcp.1040890414. [DOI] [PubMed] [Google Scholar]
  13. Kaback H. R. Transport in isolated bacterial membrane vesicles. Methods Enzymol. 1974;31:698–709. doi: 10.1016/0076-6879(74)31075-0. [DOI] [PubMed] [Google Scholar]
  14. Kawai K., Kato T., Mori H., Kitamura J., Nozawa Y. A comparative study on cytotoxicities and biochemical properties of anthraquinone mycotoxins emodin and skyrin from Penicillium islandicum Sopp. Toxicol Lett. 1984 Feb;20(2):155–160. doi: 10.1016/0378-4274(84)90141-3. [DOI] [PubMed] [Google Scholar]
  15. Konings W. N., Barnes E. M., Jr, Kaback H. R. Mechanisms of active transport in isolated membrane vesicles. 2. The coupling of reduced phenazine methosulfate to the concentrative uptake of beta-galactosides and amino acids. J Biol Chem. 1971 Oct 10;246(19):5857–5861. [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Matin A., Konings W. N. Transport of lactate and succinate by membrane vesicles of Escherichia coli, Bacillus subtilis and a pseudomonas species. Eur J Biochem. 1973 Apr 2;34(1):58–67. doi: 10.1111/j.1432-1033.1973.tb02728.x. [DOI] [PubMed] [Google Scholar]
  18. Moser U. K., Walter P. Funiculosin; a new specific inhibitor of the respiratory chain in rat liver mitochondria. FEBS Lett. 1975 Feb 1;50(2):279–283. doi: 10.1016/0014-5793(75)80508-4. [DOI] [PubMed] [Google Scholar]
  19. Shinbo T., Kamo N., Kurihara K., Kobatake Y. A PVC-based electrode sensitive to DDA+ as a device for monitoring the membrane potential in biological systems. Arch Biochem Biophys. 1978 Apr 30;187(2):414–422. doi: 10.1016/0003-9861(78)90052-8. [DOI] [PubMed] [Google Scholar]
  20. Ueno Y., Saheki M. Inhibitory effects of luteoskyrin, a hepatotoxic pigment of Penicillium islandicum Sopp, and chemically related pigments on a protozoon, Tetrahymena pyriformis GL. Jpn J Exp Med. 1968 Jun;38(3):157–164. [PubMed] [Google Scholar]
  21. YONETANI T. Studies on cytochrome oxidase. III. Improved preparation and some properties. J Biol Chem. 1961 Jun;236:1680–1688. [PubMed] [Google Scholar]
  22. Yu C., Yu L., King T. E. Studies on cytochrome oxidase. Interactions of the cytochrome oxidase protein with phospholipids and cytochrome c. J Biol Chem. 1975 Feb 25;250(4):1383–1392. [PubMed] [Google Scholar]
  23. van Schie B. J., Hellingwerf K. J., van Dijken J. P., Elferink M. G., van Dijl J. M., Kuenen J. G., Konings W. N. Energy transduction by electron transfer via a pyrrolo-quinoline quinone-dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus (var. lwoffi). J Bacteriol. 1985 Aug;163(2):493–499. doi: 10.1128/jb.163.2.493-499.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES