Skip to main content
Archives of Disease in Childhood logoLink to Archives of Disease in Childhood
. 2000 Jun;82(Suppl 2):ii6–ii9. doi: 10.1136/adc.82.suppl_2.ii6

The role of inflammation in childhood asthma

F Chedevergne, M Le Bourgeois, J de Blic, P Scheinmann
PMCID: PMC1765084  PMID: 10833470

Abstract

The role of inflammation in adult asthma is well known, involving a cascade of immunological stimulation in which mast cells and eosinophils play pivotal roles. However, the assessment of airway inflammation in children is more difficult as the invasive methods used in adults cannot ethically be used for this purpose alone. Nevertheless, limited data from studies using invasive methodology, and studies using novel non-invasive techniques such as sputum induction and nitrous oxide exhalation, are improving knowledge. The immunopathology in childhood asthma appears to mirror that in adult sufferers. The inflammatory processes are evident at an early age in wheezing infants who later develop asthma, and there are different "wheezing phenotypes" in children with atopic asthma or viral associated wheeze. The mechanisms underlying childhood asthma are dependent not only on increased numbers of inflammatory cells in the airways, but also increased activation of these cells. In vitro data have shown that corticosteroids can inhibit the secretion of proinflammatory compounds from alveolar macrophages, suggesting a potential important role for these agents in halting the development of asthma. Techniques for measuring inflammation in infants need to be refined, in order to provide increased knowledge and accurate monitoring of the disease. It is hoped that this will enable the development of early interventions to minimise the impact of asthma in infants who are identified as being susceptible.



Full Text

The Full Text of this article is available as a PDF (149.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azevedo I., de Blic J., Dumarey C. H., Scheinmann P., Vargaftig B. B., Bachelet M. Increased spontaneous release of tumour necrosis factor-alpha by alveolar macrophages from wheezy infants. Eur Respir J. 1997 Aug;10(8):1767–1773. doi: 10.1183/09031936.97.10081767. [DOI] [PubMed] [Google Scholar]
  2. Azevedo I., de Blic J., Scheinmann P., Vargaftig B. B., Bachelet M. Enhanced arachidonic acid metabolism in alveolar macrophages from wheezy infants. Modulation by dexamethasone. Am J Respir Crit Care Med. 1995 Oct;152(4 Pt 1):1208–1214. doi: 10.1164/ajrccm.152.4.7551372. [DOI] [PubMed] [Google Scholar]
  3. Baraldi E., Azzolin N. M., Zanconato S., Dario C., Zacchello F. Corticosteroids decrease exhaled nitric oxide in children with acute asthma. J Pediatr. 1997 Sep;131(3):381–385. doi: 10.1016/s0022-3476(97)80062-5. [DOI] [PubMed] [Google Scholar]
  4. Baraldi E., Dario C., Ongaro R., Scollo M., Azzolin N. M., Panza N., Paganini N., Zacchello F. Exhaled nitric oxide concentrations during treatment of wheezing exacerbation in infants and young children. Am J Respir Crit Care Med. 1999 Apr;159(4 Pt 1):1284–1288. doi: 10.1164/ajrccm.159.4.9807084. [DOI] [PubMed] [Google Scholar]
  5. Cai Y., Carty K., Henry R. L., Gibson P. G. Persistence of sputum eosinophilia in children with controlled asthma when compared with healthy children. Eur Respir J. 1998 Apr;11(4):848–853. doi: 10.1183/09031936.98.11040848. [DOI] [PubMed] [Google Scholar]
  6. Ennis M., Turner G., Schock B. C., Stevenson E. C., Brown V., Fitch P. S., Heaney L. G., Taylor R., Shields M. D. Inflammatory mediators in bronchoalveolar lavage samples from children with and without asthma. Clin Exp Allergy. 1999 Mar;29(3):362–366. doi: 10.1046/j.1365-2222.1999.00507.x. [DOI] [PubMed] [Google Scholar]
  7. Ferguson A. C., Whitelaw M., Brown H. Correlation of bronchial eosinophil and mast cell activation with bronchial hyperresponsiveness in children with asthma. J Allergy Clin Immunol. 1992 Oct;90(4 Pt 1):609–613. doi: 10.1016/0091-6749(92)90133-m. [DOI] [PubMed] [Google Scholar]
  8. Ferguson A. C., Wong F. W. Bronchial hyperresponsiveness in asthmatic children. Correlation with macrophages and eosinophils in broncholavage fluid. Chest. 1989 Nov;96(5):988–991. doi: 10.1378/chest.96.5.988. [DOI] [PubMed] [Google Scholar]
  9. Galoppin L., de Blic J., Azevedo I., Scheinmann P., Vargaftig B. B., Bachelet M. Nonspecific refractoriness to adenylyl cyclase stimulation in alveolar macrophages from infants with recurrent bronchiolitis. J Allergy Clin Immunol. 1994 May;93(5):885–890. doi: 10.1016/0091-6749(94)90382-4. [DOI] [PubMed] [Google Scholar]
  10. Gibson P. G., Wlodarczyk J. W., Hensley M. J., Gleeson M., Henry R. L., Cripps A. W., Clancy R. L. Epidemiological association of airway inflammation with asthma symptoms and airway hyperresponsiveness in childhood. Am J Respir Crit Care Med. 1998 Jul;158(1):36–41. doi: 10.1164/ajrccm.158.1.9705031. [DOI] [PubMed] [Google Scholar]
  11. Grootendorst D. C., van den Bos J. W., Romeijn J. J., Veselic-Charvat M., Duiverman E. J., Vrijlandt E. J., Sterk P. J., Roldaan A. C. Induced sputum in adolescents with severe stable asthma. Safety and the relationship of cell counts and eosinophil cationic protein to clinical severity. Eur Respir J. 1999 Mar;13(3):647–653. doi: 10.1183/09031936.99.13364799. [DOI] [PubMed] [Google Scholar]
  12. Hallsworth M. P., Soh C. P., Lane S. J., Arm J. P., Lee T. H. Selective enhancement of GM-CSF, TNF-alpha, IL-1 beta and IL-8 production by monocytes and macrophages of asthmatic subjects. Eur Respir J. 1994 Jun;7(6):1096–1102. [PubMed] [Google Scholar]
  13. Holgate S. T. The inflammation-repair cycle in asthma: the pivotal role of the airway epithelium. Clin Exp Allergy. 1998 Nov;28 (Suppl 5):97–103. doi: 10.1046/j.1365-2222.1998.028s5097.x. [DOI] [PubMed] [Google Scholar]
  14. McConnochie K. M., Roghmann K. J. Bronchiolitis as a possible cause of wheezing in childhood: new evidence. Pediatrics. 1984 Jul;74(1):1–10. [PubMed] [Google Scholar]
  15. Pin I., Radford S., Kolendowicz R., Jennings B., Denburg J. A., Hargreave F. E., Dolovich J. Airway inflammation in symptomatic and asymptomatic children with methacholine hyperresponsiveness. Eur Respir J. 1993 Oct;6(9):1249–1256. [PubMed] [Google Scholar]
  16. Sanders S. P. Nitric oxide in asthma. Pathogenic, therapeutic, or diagnostic? Am J Respir Cell Mol Biol. 1999 Aug;21(2):147–149. doi: 10.1165/ajrcmb.21.2.f158. [DOI] [PubMed] [Google Scholar]
  17. Stevenson E. C., Turner G., Heaney L. G., Schock B. C., Taylor R., Gallagher T., Ennis M., Shields M. D. Bronchoalveolar lavage findings suggest two different forms of childhood asthma. Clin Exp Allergy. 1997 Sep;27(9):1027–1035. doi: 10.1111/j.1365-2222.1997.tb01254.x. [DOI] [PubMed] [Google Scholar]
  18. Twaddell S. H., Gibson P. G., Carty K., Woolley K. L., Henry R. L. Assessment of airway inflammation in children with acute asthma using induced sputum. Eur Respir J. 1996 Oct;9(10):2104–2108. doi: 10.1183/09031936.96.09102104. [DOI] [PubMed] [Google Scholar]
  19. Uasuf C. G., Jatakanon A., James A., Kharitonov S. A., Wilson N. M., Barnes P. J. Exhaled carbon monoxide in childhood asthma. J Pediatr. 1999 Nov;135(5):569–574. doi: 10.1016/s0022-3476(99)70054-5. [DOI] [PubMed] [Google Scholar]
  20. Warner J. O., Marguet C., Rao R., Roche W. R., Pohunek P. Inflammatory mechanisms in childhood asthma. Clin Exp Allergy. 1998 Nov;28 (Suppl 5):71–91. doi: 10.1046/j.1365-2222.1998.028s5071.x. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood are provided here courtesy of BMJ Publishing Group

RESOURCES