Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Jan;177(1):1–10. doi: 10.1128/jb.177.1.1-10.1995

Lipoic acid metabolism in Escherichia coli: the lplA and lipB genes define redundant pathways for ligation of lipoyl groups to apoprotein.

T W Morris 1, K E Reed 1, J E Cronan Jr 1
PMCID: PMC176549  PMID: 8002607

Abstract

Lipoic acid is a covalently bound disulfide-containing cofactor required for function of the pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, and glycine cleavage enzyme complexes of Escherichia coli. Recently we described the isolation of the lplA locus, the first gene known to encode a lipoyl-protein ligase for the attachment of lipoyl groups to lipoate-dependent apoenzymes (T. W. Morris, K. E. Reed, and J. E. Cronan, Jr., J. Biol. Chem. 269:16091-16100, 1994). Here, we report an unexpected redundancy between the functions of lplA and lipB, a gene previously identified as a putative lipoate biosynthetic locus. First, analysis of lplA null mutants revealed the existence of a second lipoyl ligase enzyme. We found that lplA null mutants displayed no growth defects unless combined with lipA (lipoate synthesis) or lipB mutations and that overexpression of wild-type LplA suppressed lipB null mutations. Assays of growth, transport, lipoyl-protein content, and apoprotein modification demonstrated that lplA encoded a ligase for the incorporation of exogenously supplied lipoate, whereas lipB was required for function of the second lipoyl ligase, which utilizes lipoyl groups generated via endogenous (lipA-mediated) biosynthesis. The lipB-dependent ligase was further shown to cause the accumulation of aberrantly modified octanoyl-proteins in lipoate-deficient cells. Lipoate uptake assays of strains that overproduced lipoate-accepting apoproteins also demonstrated coupling between transport and the subsequent ligation of lipoate to apoprotein by the LplA enzyme. Although mutations in two genes (fadD and fadL) involved in fatty acid failed to affect lipoate utilization, disruption of the smp gene severely decreased lipoate utilization. DNA sequencing of the previously identified slr1 selenolipoate resistance mutation (K. E. Reed, T. W. Morris, and J. E. Cronan, Jr., Proc. Natl. Acad. Sci. USA 91:3720-3724, 1994) showed this mutation (now called lplA1) to be a G76S substitution in the LplA ligase. When compared with the wild-type allele, the cloned lplA1 allele conferred a threefold increase in the ability to discriminate against the selenium-containing analog. These results support a two-pathway/two-ligase model of lipoate metabolism in E. coli.

Full Text

The Full Text of this article is available as a PDF (323.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali S. T., Guest J. R. Isolation and characterization of lipoylated and unlipoylated domains of the E2p subunit of the pyruvate dehydrogenase complex of Escherichia coli. Biochem J. 1990 Oct 1;271(1):139–145. doi: 10.1042/bj2710139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ali S. T., Moir A. J., Ashton P. R., Engel P. C., Guest J. R. Octanoylation of the lipoyl domains of the pyruvate dehydrogenase complex in a lipoyl-deficient strain of Escherichia coli. Mol Microbiol. 1990 Jun;4(6):943–950. doi: 10.1111/j.1365-2958.1990.tb00667.x. [DOI] [PubMed] [Google Scholar]
  3. Barker D. F., Campbell A. M. Use of bio-lac fusion strains to study regulation of biotin biosynthesis in Escherichia coli. J Bacteriol. 1980 Aug;143(2):789–800. doi: 10.1128/jb.143.2.789-800.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chambers S. P., Prior S. E., Barstow D. A., Minton N. P. The pMTL nic- cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene. 1988 Aug 15;68(1):139–149. doi: 10.1016/0378-1119(88)90606-3. [DOI] [PubMed] [Google Scholar]
  5. Davis T. N., Muller E. D., Cronan J. E., Jr The virion of the lipid-containing bacteriophage PR4. Virology. 1982 Jul 30;120(2):287–306. doi: 10.1016/0042-6822(82)90031-9. [DOI] [PubMed] [Google Scholar]
  6. Fussey S. P., Ali S. T., Guest J. R., James O. F., Bassendine M. F., Yeaman S. J. Reactivity of primary biliary cirrhosis sera with Escherichia coli dihydrolipoamide acetyltransferase (E2p): characterization of the main immunogenic region. Proc Natl Acad Sci U S A. 1990 May;87(10):3987–3991. doi: 10.1073/pnas.87.10.3987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Graña D., Gardella T., Susskind M. M. The effects of mutations in the ant promoter of phage P22 depend on context. Genetics. 1988 Oct;120(2):319–327. doi: 10.1093/genetics/120.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guest J. R., Russell G. C. Complexes and complexities of the citric acid cycle in Escherichia coli. Curr Top Cell Regul. 1992;33:231–247. doi: 10.1016/b978-0-12-152833-1.50018-6. [DOI] [PubMed] [Google Scholar]
  9. Herbert A. A., Guest J. R. Lipoic acid content of Escherichia coli and other microorganisms. Arch Microbiol. 1975 Dec 31;106(3):259–266. doi: 10.1007/BF00446532. [DOI] [PubMed] [Google Scholar]
  10. Hipps D. S., Perham R. N. Expression in Escherichia coli of a sub-gene encoding the lipoyl and peripheral subunit-binding domains of the dihydrolipoamide acetyltransferase component of the pyruvate dehydrogenase complex of Bacillus stearothermophilus. Biochem J. 1992 May 1;283(Pt 3):665–671. doi: 10.1042/bj2830665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Howard P. K., Shaw J., Otsuka A. J. Nucleotide sequence of the birA gene encoding the biotin operon repressor and biotin holoenzyme synthetase functions of Escherichia coli. Gene. 1985;35(3):321–331. doi: 10.1016/0378-1119(85)90011-3. [DOI] [PubMed] [Google Scholar]
  12. Jiang P., Cronan J. E., Jr Inhibition of fatty acid synthesis in Escherichia coli in the absence of phospholipid synthesis and release of inhibition by thioesterase action. J Bacteriol. 1994 May;176(10):2814–2821. doi: 10.1128/jb.176.10.2814-2821.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kohara Y., Akiyama K., Isono K. The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell. 1987 Jul 31;50(3):495–508. doi: 10.1016/0092-8674(87)90503-4. [DOI] [PubMed] [Google Scholar]
  14. Kushner S. R., Nagaishi H., Templin A., Clark A. J. Genetic recombination in Escherichia coli: the role of exonuclease I. Proc Natl Acad Sci U S A. 1971 Apr;68(4):824–827. doi: 10.1073/pnas.68.4.824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Magnuson K., Jackowski S., Rock C. O., Cronan J. E., Jr Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol Rev. 1993 Sep;57(3):522–542. doi: 10.1128/mr.57.3.522-542.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Maloy S. R., Ginsburgh C. L., Simons R. W., Nunn W. D. Transport of long and medium chain fatty acids by Escherichia coli K12. J Biol Chem. 1981 Apr 25;256(8):3735–3742. [PubMed] [Google Scholar]
  17. Morris T. W., Reed K. E., Cronan J. E., Jr Identification of the gene encoding lipoate-protein ligase A of Escherichia coli. Molecular cloning and characterization of the lplA gene and gene product. J Biol Chem. 1994 Jun 10;269(23):16091–16100. [PubMed] [Google Scholar]
  18. Neuwald A. F., Stauffer G. V. An Escherichia coli membrane protein with a unique signal sequence. Gene. 1989 Oct 30;82(2):219–228. doi: 10.1016/0378-1119(89)90047-4. [DOI] [PubMed] [Google Scholar]
  19. Neuwald A. F., Stauffer G. V. DNA sequence and characterization of the Escherichia coli serB gene. Nucleic Acids Res. 1985 Oct 11;13(19):7025–7039. doi: 10.1093/nar/13.19.7025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ohsawa I., Speck D., Kisou T., Hayakawa K., Zinsius M., Gloeckler R., Lemoine Y., Kamogawa K. Cloning of the biotin synthetase gene from Bacillus sphaericus and expression in Escherichia coli and Bacilli. Gene. 1989 Aug 1;80(1):39–48. doi: 10.1016/0378-1119(89)90248-5. [DOI] [PubMed] [Google Scholar]
  21. Oppermann F. B., Steinbüchel A. Identification and molecular characterization of the aco genes encoding the Pelobacter carbinolicus acetoin dehydrogenase enzyme system. J Bacteriol. 1994 Jan;176(2):469–485. doi: 10.1128/jb.176.2.469-485.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Otsuka A. J., Buoncristiani M. R., Howard P. K., Flamm J., Johnson C., Yamamoto R., Uchida K., Cook C., Ruppert J., Matsuzaki J. The Escherichia coli biotin biosynthetic enzyme sequences predicted from the nucleotide sequence of the bio operon. J Biol Chem. 1988 Dec 25;263(36):19577–19585. [PubMed] [Google Scholar]
  23. Perham R. N. Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry. 1991 Sep 3;30(35):8501–8512. doi: 10.1021/bi00099a001. [DOI] [PubMed] [Google Scholar]
  24. Prentki P., Krisch H. M. In vitro insertional mutagenesis with a selectable DNA fragment. Gene. 1984 Sep;29(3):303–313. doi: 10.1016/0378-1119(84)90059-3. [DOI] [PubMed] [Google Scholar]
  25. Prober J. M., Trainor G. L., Dam R. J., Hobbs F. W., Robertson C. W., Zagursky R. J., Cocuzza A. J., Jensen M. A., Baumeister K. A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science. 1987 Oct 16;238(4825):336–341. doi: 10.1126/science.2443975. [DOI] [PubMed] [Google Scholar]
  26. REED L. J., LEACH F. R., KOIKE M. Studies on a lipoic acid-activating system. J Biol Chem. 1958 May;232(1):123–142. [PubMed] [Google Scholar]
  27. Reed K. E., Cronan J. E., Jr Lipoic acid metabolism in Escherichia coli: sequencing and functional characterization of the lipA and lipB genes. J Bacteriol. 1993 Mar;175(5):1325–1336. doi: 10.1128/jb.175.5.1325-1336.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Reed K. E., Morris T. W., Cronan J. E., Jr Mutants of Escherichia coli K-12 that are resistant to a selenium analog of lipoic acid identify unknown genes in lipoate metabolism. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3720–3724. doi: 10.1073/pnas.91.9.3720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Singer M., Baker T. A., Schnitzler G., Deischel S. M., Goel M., Dove W., Jaacks K. J., Grossman A. D., Erickson J. W., Gross C. A. A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli. Microbiol Rev. 1989 Mar;53(1):1–24. doi: 10.1128/mr.53.1.1-24.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Steiert P. S., Stauffer L. T., Stauffer G. V. The lpd gene product functions as the L protein in the Escherichia coli glycine cleavage enzyme system. J Bacteriol. 1990 Oct;172(10):6142–6144. doi: 10.1128/jb.172.10.6142-6144.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ubbink M., Van Beeumen J., Canters G. W. Cytochrome c550 from Thiobacillus versutus: cloning, expression in Escherichia coli, and purification of the heterologous holoprotein. J Bacteriol. 1992 Jun;174(11):3707–3714. doi: 10.1128/jb.174.11.3707-3714.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vanden Boom T. J., Reed K. E., Cronan J. E., Jr Lipoic acid metabolism in Escherichia coli: isolation of null mutants defective in lipoic acid biosynthesis, molecular cloning and characterization of the E. coli lip locus, and identification of the lipoylated protein of the glycine cleavage system. J Bacteriol. 1991 Oct;173(20):6411–6420. doi: 10.1128/jb.173.20.6411-6420.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. White R. H. Stable isotope studies on the biosynthesis of lipoic acid in Escherichia coli. Biochemistry. 1980 Jan 8;19(1):15–19. doi: 10.1021/bi00542a003. [DOI] [PubMed] [Google Scholar]
  34. Zhang S., Sanyal I., Bulboaca G. H., Rich A., Flint D. H. The gene for biotin synthase from Saccharomyces cerevisiae: cloning, sequencing, and complementation of Escherichia coli strains lacking biotin synthase. Arch Biochem Biophys. 1994 Feb 15;309(1):29–35. doi: 10.1006/abbi.1994.1079. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES